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This paper provides an introduction to real options, as well as highlighting
some important issues that are often neglected by real options analysts. While
many books and surveys have been written on real options, there are some
ubiquitous concepts that are not well-understood by many authors and
practitioners. The objective of this paper is to redress this shortfall. 

The paper discusses organizational issues that impede adoption of real
options strategies. It discusses modelling and analytic techniques for real
options. (JEL: C61, D92, G31)
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I. Introduction

There are several introductions to real options, such as technical books
by Dixit and Pindyck (1994), Trigeorgis (1996), and practitioner books
by Amram and Kulatilaka (1999) and Copeland and Antikarov (2001).
There are several good surveys of real options, including Dixit (1989a),
Pindyck (1991), Sick (1989), and Sick (1995). We assume that the
reader may be familiar with some of these publications and they
certainly contain the technical foundations of much of what we discuss
here, so we will not provide detailed references throughout this paper.
This paper is partially self-contained inasmuch as the key ideas are
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largely developed within the paper but the interested reader should
know that these other papers and books are good sources for further
exploration of these ideas. Our purpose in this paper is to provide a brief
introduction that highlights several important points that we think have
been neglected in the literature and by practitioners.

In the next two sections, we deal with conceptual issues and only
discuss formulas where necessary to make a point. For readers
unfamiliar with the formulas, references are made to later sections and
references for the formulas, but readers can capture the important points
of those sections without the detailed formulas.

Section II is a general discussion of four common characteristics
(real assets, risk, leverage and flexibility) of real options and how they
come together to create value for their owner.

Section III discusses organizational impediments to the
implementation of real options strategy. They are generally agency
problems. Some problems arise from the lack of urgency to immediately
solve a real options problem so that they can become neglected. Other
problems arise because real options strategy is often not a measurable
activity as required by many incentive compensation systems. Such
incentive compensation systems are at odds with shareholder value
maximization because real options strategy is needed by any firm that
wants to maximize value. Another problem arises from pro-cyclical
investment strategies arising from capital rationing and balanced budget
principles. Earnings smoothing is very popular in managerial circles and
this is also hostile to optimal real option strategy.

Section IV shows how real options can be modelled as decision trees
and how decision trees break down into two components: an influence
diagram to model risk and a lattice to model risk. Discussion of the
lattice approach is covered in greater detail in section VII.

Section V introduces popular mathematical approaches to the
analysis of real options strategy and value: analytic solutions, numerical
solutions of partial differential equations, lattices and simulation. The
most practical of these for real options practitioners are lattice and
simulation methods and both are discussed in greater detail in sections
VII and VIII. Section V also introduces the notion of convenience
dividends and discusses various types of stochastic processes, such as
additive and lognormal Brownian motion, and Ornstein-Uhlenbeck and
hybrid mean reversion.

Analytic solutions for real option analysis are based on the
fundamental partial differential equation (PDE) for real option value.
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These are discussed in section VI. It also discusses the smooth pasting
condition for optimality of decisions.

Section VII discusses the lattice or tree approach to valuation of real
options. It describes the settings for the magnitude of lattice jumps to
model volatility and the assignment of risk-neutral probabilities to
model drift.

Section VIII discusses the least squares Monte Carlo (LSM) method
of assessing real options. It shows how to take a forward-looking
technique like simulation to estimate conditional expected values, just
as the lattice approach does. These conditional estimates are then
compared for the various strategy alternatives and the result is carried
in a backwards recursion to earlier times.

These latter two sections use the Bellman principle of optimality
rather than smooth pasting to find optimal strategies.

Section IX offers some concluding remarks.

II.  How Do Real Options Create Value?

Properly managed options create value and reduce risk for the
organizations that own them. They arise because of the interplay of 4
things:

(1) Real assets: financial options are generally redundant and hence
do not create of destroy shareholder value. Real options cannot be
replicated by stakeholders and generally create value.

(2) Risk: volatility and risk-return relationships.

(3) Leverage: variable costs and benefits work against either fixed
costs and benefits or imperfectly correlated costs and benefits.

(4) Flexibility: to manage the risk and leverage by accept upside risk
potential and reducing downside risk.

A. Real Assets

Real assets include many things, such as real estate, factories, mines, oil
wells, research & development and other intellectual property. Real
assets are created naturally. In fact, real options analysis is often done
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without a physical asset. We only need well-defined states of nature.
For example, a tourist going to a seaside resort may be unsure of the
destination weather and will bring a swim suit, rain gear and sailing gear
to accommodate many possible outcomes of weather. The tourist is
behaving in a sensible way to maximize the value of a real option on the
vacation weather. Each day, the tourist will consider the weather
forecast and choose an activity that suits the weather and the location.

In contrast, financial assets are an invention of humankind. They
include stocks, bonds, and financial derivatives, such as options, futures,
and swaps. These are generally contractual claims to real assets or
outcomes that specify circumstances under which one party conveys the
benefits of a real asset to a buyer of the financial asset. The literature on
financial derivatives is enormous and many companies expend a lot of
resources (personnel, trading fees, maintenance of trading desks) to
manage their derivative portfolios.

Real Options Can Create Value Where Financial Options Cannot

The standard literature on financial derivatives is based on the
observation that a financial derivative is redundant inasmuch as its
payoff can be replicated by a portfolio of the underlying asset and some
other asset, such as a bond. This analysis was popularized by Black and
Scholes (1973) and is still the dominant methodology for assessing
financial derivatives.

But, this begs a fundamental question: If the financial derivative is
redundant, what value is created by trading the derivative? In fact, this
is a serious issue that dogs the whole business of financial derivatives.

Here is another way to look at the issue. Some of the most
fundamental results in corporate finance are the Modigliani-Miller
(M-M) propositions. These propositions establish the irrelevance of
corporate debt policy decisions and the irrelevance of the firm’s
dividend policy decisions. A simple extension of these results also
establishes the irrelevance of the firm’s hedging policy with financial
derivatives. To see why, note that the M-M propositions essentially say
that corporate financial decisions are irrelevant because they are
undertaken by transactions in financial markets. Since financial markets
are efficient, these transactions do not create or destroy shareholder
value. All they do is rearrange the financial risk of the firm or the
dividend payout of the firm. Now, shareholders can replicate the same
financial policy, or undo the financial policy by making the same
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transactions in financial markets themselves. Since the shareholders
transact in efficient markets to adjust the financial exposure they have
from the corporation, these financing transactions neither create nor
destroy value.

Thus, we have a very fundamental version of the M-M propositions:
When a firm deals with financial derivatives, it does not create or
destroy shareholder wealth, because shareholders can costlessly do or
undo these decisions on their own account.

Now, consider corporate decisions involving real assets. These
include capital budgeting decisions to acquire, abandon, expand and
contract operations. They include the decisions of when to turn plants
and production systems on and off and what feedstocks to use or output
streams to produce. These real asset decisions cannot be undone by a
shareholder. A shareholder who thinks the firm has erred by developing
a project too early cannot undo the transaction in financial markets. The
firm has undertaken the decision and the shareholder can’t reverse it.
Similarly, if the firm should abandon a losing division, the shareholder
can’t replicate that decision by selling the division. Selling shares in the
firm doesn’t replicate the decision because the damage has already been
done by the bad decision and the shares would be sold at a depressed
value.

Thus, on a very fundamental basis, decisions involving real assets
are relevant to creating or destroying shareholder value. To put it
another way:

The firm can create significant shareholder wealth by having good
real option policy and it can destroy significant shareholder value with
bad real option policy.

Real Options Often Cannot be Valued by Replication Analysis

A real option to develop a project cannot be valued by a replication
analysis if there is no market already in existence for the underlying
asset. Thus, if the result of a real option strategy is to create a specific
mine that produces a particular blend of minerals, there may be no pure
play in a mine that provides the same risky payoffs as the yet-to-be
developed mine. One cannot trade shares that haven’t been issued. Real
options to perform research and development typically depend on an
underlying asset that does not exist until the real option is exercised.

Moreover, the risks that drive a lot of real options are quantity risks
rather than price risks, such as the uncertain demand for petroleum,
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electricity or transportation services or the uncertain supply of rainfall.
Typically, there are few securities around that allow one to trade
quantity risks.

Another problem is that real options have more types of stochastic
processes than are often encountered with financial options. Financial
options on stocks are usually modelled with a lognormal diffusion and
a constant dividend yield. This is because the discipline of the market
prevents some unusual behaviour, such as mean reversion. However,
with real options, the dividend is often an implied convenience
dividend, so market discipline does not rule out things like mean
reversion.

Many commodity markets exhibit mean reversion because high
prices are met by gradual supply and demand adjustments as suppliers
build the capital equipment needed to increase supply of the good and
consumers make capital adjustments to economize on the use of the
expensive good. Thus, high prices tend to fall gradually towards a
long-run mean. Similarly, low prices tend to gradually increase towards
a long-run mean.

In contrast, suppose a stock price is mean reverting. Then, if the
stock price is above its longrun mean, a profitable speculation will be
to sell the stock short and cover the short position with a repurchase as
soon as the price falls. Since short sales are relatively easy to make,
there will be significant selling pressure on the stock until it falls to its
long-run mean. The stock price will immediately, rather than gradually,
fall to the long-run mean. A stock price below its long-run mean will
give buying pressure until the stock meets its long-run mean. Thus, we
do not see the gradual mean-reversion adjustments in stocks that we see
in some commodities.

B. Risk

It is very uncommon to have a real option without some underlying risk
driver.1 The important characteristic of risk, or variation in economic

1. Indeed, some would say that risk is an essential feature of real options. That may be
true, but some operating strategies can be driven by predictable seasonal variations in a
fundamental asset price or business condition, and they have all the characteristics that we
would ascribe to a real option. For example, a gas storage facility works on the seasonality
of natural gas prices. The decisions of when to inject gas and when to withdraw gas are real
option decisions and they are important even if there is no risk that gas prices will change
from a seasonal pattern.
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conditions, is that it requires dynamic decision making. The manager
acquires information over time and uses it to make decisions about how
to operate a business.

In the presence of risk, the manager will not be able to formulate a
static “business plan” that describes what the organization will be doing
at each date in the future. When companies, organizations or
governments make headlines that say they will expand a plant starting
3 years from now, or build a traffic intersection 5 years from now, they
are likely not following a real options strategy. They are likely spending
out of free cash flow in a capital rationing context. If instead, they say
things like “If ethylene prices reach $x then we will build another
ethylene production plant,” or “If the intersection gets y cars per day,
then we will upgrade the intersection,” then the manager may be
following a real options strategy.

This means that an important feature of real options analysis is the
modelling of risk. This generally requires the modelling of stochastic
processes, and the following issues typically become important:

Drift or growth in the stochastic variable is important. This is the
first moment in the variable representing increments or changes to the
process.

Volatility of the process must be modelled. This is the second
moment of the process.

Correlation between the stochastic processes underlying the real
option is important because it determines the extent to which two
processes combine to magnify risk or reduce risk in a natural hedge. For
example, an oil company produces natural gas and crude oil and the
prices of these two outputs are positively correlated, which increases
risk. But, an electric power generator who burns natural gas has
uncertain electricity prices as an output and uncertain gas prices as an
input. These are positively correlated and the result is a natural hedge
that reduces risk.

Correlation between the stochastic processes driving the real option
and the stochastic processes that drive the systematic risk in the
economy. This results in a systematic risk premium that must be
modelled if the underlying risk cannot be replicated by a dynamic

Similarly, an airline has seasonal variations in its demand and a real options strategy
response is to have new fuel-efficient planes running on long-distance “base-load” routes,
where the plane is in the air a large fraction of the time. The airline can employ old planes
(with a low capital value) on short routes or routes that may be cancelled in low season. This
strategy makes sense even if there is no risk that demand will vary from the seasonal forecast.
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trading strategy in existing financial products. The presence of this risk
premium distinguishes real options from operations research strategies,
which typically do not model such a risk premium, and from financial
option strategies, which sidestep the risk premium by using a replication
strategy.

Complexity of the risk model means that some of the standard
approaches to analyzing financial derivatives will not work. Complexity
arises from mean reversion, multiple risk processes, options to exchange
one risky asset for another and jumps or discontinuities. For simple
processes, the numerical solution of differential equations or the use of
lattices or trees to represent the risk is often adequate. For more
complex processes, the solution may be to use simulation, which is
difficult in an optimizing environment.

C. Leverage

Many people will be surprised to see leverage on our list of key defining
characteristics of real options, but we cannot imagine many real options
that do not have leverage. The leverage in a development real option
comes from the capital investment cost. The leverage in an operating
real option comes from fixed operating cost.2

Sometimes the leverage comes from another stochastic value, when
we have the option to exchange one asset or cash flow for another. For
example, we can model a real estate development option in terms of a
payoff that gives (re)developed urban land of uncertain value in
exchange for surrendering underdeveloped urban land or agricultural
land, either of which have uncertain value. We can have operating
options where we take an input of uncertain value (e.g. natural gas or
chemical feedstock) and exchange it for an output of uncertain value
(electricity or plastic). As long as the two processes are not perfectly
correlated, we have operating leverage.

2. There is also financial leverage arising from debt obligations. While this creates
similar issues to those we discuss in this section, it is common to analyze real options on an
unlevered basis, as if they were only equity financed and have only operating leverage.
However, Aranda León et al. (2008) point out that there can be interest tax shields and
bankruptcy effects associated with financial leverage and explore their impact on real option
valuation. We do not explore this issue here, except to note that they find that real options
even in an unlevered setting should be discounted at a lower rate from debt to account for
preferential personal tax treatment of equity. They also explore how these tax shields are also
offset by bankruptcy costs. Some of these issues are discussed in discrete time by Sick
(1990).
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Abandonment options involve the exchange a project of uncertain
value for a certain abandonment value.3 The uncertain project value
working against the fixed abandonment value also gives operating
leverage. A useful summary variable that describes leverage is the ratio
P/W of the value of the underlying asset value P to the value of (real)

option value W(P). Leverage combines with the hedge ratio 
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the measure of systematic risk in the underlying asset. It is traditionally
measured by regressing rates of change in the underlying asset price on
the systematic (market) index, so it is a measure of risk per dollar
invested. Similarly, the volatility of the underlying asset, σP is a measure
of standard deviation of rates of change in the underlying asset price
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3. Sometimes it is hard to identify the cash flow that is received when a project is
abandoned. In practice, abandonment relieves the organization of the obligation to pay a
stream of fixed operating costs that must be paid to get the output stream. The present value
of this stream of fixed costs can be taken as the payout for an abandonment option, which is
analogous to a put option in the financial world. In this case the asset that is surrendered is
the claim to the stream of revenue.

In particular, note that the popular lognormal models of stock prices do not have a natural
fixed value that is received upon abandonment. Without such a payoff, there is no incentive
to abandon and we would never see firms in bankruptcy or projects being abandoned. This
highlights the folly of modelling stock prices as being lognormally distributed. They are more
likely lognormal less some cost that generates operating leverage. An abandonment analysis
would take a lognormally distributed present value of the revenue stream as the underlying
asset and the present value of fixed operating costs as the exercise price that is received upon
abandonment.
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Equation (2) is particularly important as it lets us determine whether we
can use a cost of capital approach to assessing real option values and
strategy.4 If the elasticity η(P) is constant as P changes, then we have a
constant cost of capital for the option that we can compute from the
capital asset pricing model (CAPM) or arbitrage pricing theory (APT).
The risk premium over the riskless rate of return is proportional to beta
in these models. On the other hand, if the elasticity η(P) changes with
P, as it usually does, then we do not have a useable cost of capital for
the option. This is the reason why we generally cannot use risk-adjusted
discount rates (RADRs) to analyze real options, and are, instead, forced
to use a certainty-equivalent analysis involving risk-neutral
probabilities.5

Now, the important thing we want to point out is that the main
source of variability in the option elasticity is the option leverage in
many cases. To examine this further, note that for a typical finite-lived
development (call) option, as shown in figure 1, the hedge ratio Δ(P) is
increasing from 0 to 1 as P increases from 0 to 4, since it is the slope of

4. This equation actually appears in Black and Scholes (1973), where they gave an
alternative derivation of their option pricing model based on the CAPM. This derivation is
a more useful approach in real option pricing models than the replication approach.

5. There is an interesting knife-edge situation where the hedge ratio effect exactly
matches the leverage effect to leave a constant cost of capital for a real option. It is the
situation of a perpetual american option on a lognormally distributed underlying asset,
discussed in section VI, A,  Differentiating formula (14) for the value of the development
option (where A2 = 0), we have
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which is a constant. Thus, these perpetual real options on a lognormally distributed
underlying asset have a constant beta and can be evaluated by risk-adjusted discount rates.
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FIGURE 1.— The elasticity of the option is the product of the
leverage ratio and the hedge ratio. The leverage ratio varies much more
strongly with underlying asset price so that the elasticity and option beta
increase as the underlying option price falls. This is for a european
at-the-money call option with one year to maturity, a volatility of 30%
and a discount rate of 3%.

the option value, which is a convex, increasing function. Note, also, that
the leverage ratio P/W decreases as P increases. Indeed, we may recall
from the kinds of leverage ratio arguments used in an introductory
finance course, the leverage ratio of an option at maturity blows up to
4 as P falls from above towards the development (exercise) value K.
Thus, while there is the potential for the decreasing leverage ratio to
exactly offset the increasing hedge ratio, leaving the elasticity and
option beta constant as P increases, it doesn’t happen in this common
case.

The message here is that we cannot count on an option having a
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constant cost of capital,6 so we are forced to use risk-neutral
(certainty-equivalent) pricing. This problem is partly due to the fact that
option hedge ratios change with the underlying asset price, but the
major source of variation in the option beta is actually the operating
leverage coming from the fixed development costs. This problem occurs
in valuing risky assets even in the absence of flexibility and real
options. Modern asset pricing is forced to consider more highly levered
cash flow streams with swaps, spreads and real options. It is time to give
much more serious consideration to risk-neutral or certainty equivalent
pricing in these situations. This is commonly done in financial
derivatives, but the principle should be employed in many more real
asset situations.

D. Flexibility

The fourth important characteristic of real options is flexibility. Without
flexibility, all we have is a complex risk model – the real option cannot
create value. While this is trivially true, it is easy to overlook.

Flexibility means that the manager must make decisions contingent
on the information that arrives about the risk variables. It means, in
particular, that the manager cannot have fixed or static plans. Common
business plans are static. Organizations often post 5-year plans of
capital investment. When an organization slavishly adheres to such a
fixed plan, it loses the ability to use flexibility, which is needed to
create real option value.

How Do Real Options Create Value and Manage Risk?

Real options combine flexibility, leverage and risk to create value. One
way to consider this is to note that the flexibility allows the manager to
capture upside potential while mitigating much of the downside risk.
The typical development option to receive an underlying operating
project of uncertain value P by paying a capital construction cost K pays
off with “hockey-stick payoff” max{0, P – K}. The payoff is shown in
figure 2. The payoff function is a convex function, and we typically get
convex functions as the result of optimizing decisions. For example, if

6. See Hodder et al. (2001) for a further discussion of this problem with a stochastic
cost of capital.
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FIGURE 2.— Real options create value by mitigating downside risk.

we do not have the right to delay the project, the payoff is P – K, which
is the dotted straight line that is not convex. An important mathematical
result involving convex functions is Jensen’s inequality. For a function
W(P) of a risky variable P, it says that the expected value of a convex
function is greater than the value of the function evaluated at the
expected value of the underlying variable:

( )[ ] [ ]( ).E W P W E P>

Figure 2 shows a situation that starts with an initial underlying asset
value P. The asset price can go to P + or P – with equal probability
before the final payoff. Since the payoff is truncated at 0, the option
payoff in the down state W – > P – – K so the option mitigates downside
risk. The expected option value E[W] is thus above the value of the
option payoff P – K that would occur without the risk.

Alternatively, we can think of real options as providing a
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risk-management strategy. By using the flexibility of waiting to make
decisions until more is known about the potential payoffs, the manager
can reduce the downside risk. A european option will truncate the left
tail of the probability distribution at the exercise price.

III.  Impediments to the Adoption of Real Options Strategy

The following issues often arise to induce managers to avoid a
value-creating real options strategy:

(A) The smooth pasting condition. Not misunderstanding it, but the
lack of discipline that it encourages.

(B) Activity-based compensation systems that encourage
management to exercise their real options too early.

(C) Pro-cyclical investment policies by governments and
corporations as they balance budgets and smooth revenues.

(D) Earnings smoothing by managers.

We discuss each of these issues below.

A. The Smooth Pasting Condition

The smooth pasting condition is an optimality condition that describes
the optimal trigger point of for development of an american (real)
option. Figure 3 shows the solutions to an american call option with
various trigger values P†, where the trigger value is the underlying asset
value that triggers the development decision.7 At the optimal trigger
point, the graph of the option value touches the payoff function and the
two graphs are tangent to each other. If the option is exercised too early,
such as at P† = $160, the option value lies below the payoff boundary
max{0, P – K} for $160 < P < $575. Choosing a payoff trigger between

7. The graph is for a perpetual american call option on a lognormally distributed asset
when the development cost is $100, the discount rate is 3%, the dividend yield is 3%, and the
volatility is 25%. The solution to this problem is given in section VI, A, and the optimal
trigger value is given by equation 17 as PC *= $266.
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FIGURE 3.— This graph shows real option values as a function of
the underling asset value for various choices of the exercise trigger P†.
The real option is optimally developed at a trigger of P* = $266. The
value associated with other development triggers is also shown, along
with the intrinsic value, max{0, P – K}, which corresponds to a trigger
value from the traditional NPV rule, where P† = K = $100.

these two points will increase option value. Thus, at the optimum, the
option value must be tangent to the exercise payoff function.

This is fine, since smooth pasting can be used to help solve for the
optimal real option value. The problem arises because one can exercise
a real option a little too early (e.g. P† = $200), or a little too late (e.g. P†

= $350) and the value of the option is not significantly impaired, as
shown in figure 3. The significant loss in value occurs when the option
is developed too early at prices between $100 and $200.

Figure 4 shows similar information in a 3-dimensional graph. We
can see that significant value is lost by exercising very early (near the
development cost, which is what the traditional NPV rule would have
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FIGURE 4.— The option value for various trigger hurdles.

suggested), but relatively little value is lost by choosing a broad range
of trigger values that are near the optimal trigger value of $266. 

Why is this a problem? Well, there is no sense of urgency to get the
exercise point precisely right. This makes it easy to defer dealing with
the problem (exercise late). Exercising too late is just like
procrastination — the job never gets done without a deadline. Thus, real
option strategy can get confused with lethargy or procrastination.8

The smooth pasting condition gives us the luxury of robustness of
the real option to not act in the precisely optimal way. But this same
robustness allows us to be sloppy in analyzing real options. This allows
us to use rules of thumb or other dangerous proxies for real option
management that cause us to lose sight of the real problems.

For example, the oil industry is quite aware of real options, but few
firms have any tools in place to optimize the value of real options.
However, they regularly acquire tools to do “portfolio management”
which is a complex mean variance analysis technique for selecting
projects that is lacking in any theoretical or market-based

8. Later, we discuss the misplaced incentives to exercise too early.
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underpinnings. Many companies use Value at Risk (VaR) as an analytic
tool, which, despite its complexity, does nothing to help them create
shareholder value. Thus, companies are not averse to using a
complicated quantitative analysis, but they are unfortunately averse to
using real options strategy.

B. Activity-based Compensation Systems

Incentive compensation must be based on something that can be
measured objectively. Ideally, one would like to choose a compensation
system that measures an individual’s contribution to the value of the
firm. This is the basis for value-based incentive compensation systems,
such as Stern Stewart’s Economic Value Added (EVA). In the right
circumstances, these can provide the incentives for managers to
maximize the value of the firm. There are other popular measures of
performance that don’t do so well. In order to be objective, these
measures are often based on measurable characteristics such as activity.
Thus, managers are often given compensation based on the level of sales
(or sales growth), the level of profit, the number of employees they
supervise or the dollar value of the assets that they administer.

Since a real option to defer often has little measurable activity
associated with it until it is exercised, there is a strong tendency to not
give incentive compensation to a manger who maximizes option value
by deferring. Incentive-based compensation often induces managers to
destroy real option value by exercising too early.

It is instructive to understand the circumstances under which
compensating the manager with EVA induces her to maximize firm
value. If the manager

(1) lives forever,

(2) doesn’t leave her job, and

(3) has the same adjustment or discount for risk as a well-diversified
shareholder,

then she will manage and select projects to maximize the present value
of the risk-neutral expectation of EVA-based incentive compensation.
If her compensation is linear in EVA, this means she maximizes the
risk-neutral expectation of the stream of EVA. If her discount for risk
is the same as that of a diversified shareholder (“the market”), she has
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the same risk-neutral expectation operator as does the market. If she
lives forever in the same job, she looks at precisely the same stream of
cash flows as does the market. Thus, in maximizing the value of the
stream of her EVA, she maximizes the market value of the firm. Under
these assumptions, EVA-based incentive compensation will induce the
manager to maximize real option value. This is good, because it
establishes that not all activity-based compensation systems necessarily
destroy real option value.

However, if these three criteria are not met, we can have a wedge
between manager and shareholder incentives. Perhaps we can develop
EVA adjustments that mitigate these problems. Of course, we could
develop whole new compensation systems. The problem becomes a
principal-agent problem with an asymmetry between the information
(agent) of the manager and the less-informed shareholders (principal).

C. Erroneously Using Pro-Cyclical Investment Strategies

Many companies regularly employ capital rationing techniques, which
resemble real option techniques inasmuch as they force the firm to delay
projects beyond the point where the NPV is simply positive. However,
they get the details of the capital budgeting process dangerously wrong.
Typically, the budget for capital rationing is set equal to the free cash
flow of the firm, which is basically income from the prior year, plus
depreciation less dividends and required capital expenditures. Thus, if
the prior year’s income is high, the capital budget is high and more
projects are accepted.

This results in a pro-cyclical investment pattern that lags rather than
leads the economy. A real options analysis requires forecasting to
determine the value of an exercised project and leads the economy.

Similarly, we must be concerned with the popularity of budget
balancing by governments all over the world. While budgets should be
balanced in the long run, governments now balance them in the short
run as well. This leads to the same pro-cyclical boom and bust spending.
Pro-cyclical spending patterns just lead to a boom and bust economy,
which does nobody any good.

Certainly governments of the 1960s and 1970s lacked fiscal
discipline as they pursued a neo-Keynesian policy of injecting deficits
into their economies to get them going faster, when the net result was
really to get more inflation. The reaction in the 1990s for governments
of all stripes around the world was to focus on balancing budgets. They
balanced budgets on an annual basis, not even averaging over a
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multi-year period. This is just a variation of corporations using capital
rationing and spending out of free cash flow. It seems that politicians
think that their electorates have so little faith in their government’s
ability to follow a disciplined capital investment strategy that they
precommit to an irrational investment strategy — giving up their rights
to manage investment properly. This results in a pro-cyclical investment
strategy on the demand side (demand for investment goods): when the
economy is booming and cash flows and taxes are high, they spend
more, creating more of a boom. When times are bad, they cause more
contraction of the economy.

A real options strategy of development and abandonment is
characterized by a hysteresis effect: firms are less likely to start a
project and less likely to abandon a project than a simple NPV analysis
would suggest. Thus, there is a smoothing effect, rather than a
boom-bust effect, in the deployment of projects. This assists in the
planning of scarce resources, such as key personnel who are needed to
manage or engineer projects. It results in smoother investment cycles.9

D. Earnings Smoothing Can Destroy Real Option Value

Managers and shareholders are taking very narrow views of firm
performance these days. They focus on sequential earnings growth so
that they can compare quarter-to-quarter earnings changes or
year-to-year earnings changes. Perhaps the recent accounting scandals
will defuse some of this excessively narrow focus by making investors
understand the extent to which earnings can be manipulated with
various accounting treatments.

However, many managers are still deluded to believe that smooth
earnings really is a key component of share value. One of us recently
heard a senior manager at an energy company, which had an electric
utility division and a petroleum production division, who said that he
couldn’t really afford to adopt a real options strategy because it would
cause him to defer projects sometimes and develop them at other times.
The result is that his company’s earnings stream would be more volatile
and the market would regard his corporate revenue to be more heavily
weighted towards the company’s oil and gas assets than its electric
utility assets. In other words, he thought that the oil and gas division
would command a lower P/E multiple than would the utility division,

9. However, this investment smoothing doesn’t necessarily smooth earnings or cash
flow.
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because of its higher risk. He thought he had to smooth earnings to
make the oil and gas subsidiary resemble a utility, and hence command
a higher multiple. If this can really be true, it is a sorry indictment of the
poor quality of accounting information coming out about his firm.

Perhaps one good thing that will come of the accounting scandals is
that investors will become inherently suspicious of activity as reported
in accounting numbers and look to deeper understandings of whether
the firm is being properly managed. Hopefully, investors will expect a
meaningful real options strategy to be spelled out in the Management
Discussion and Analysis (MDA) section of their Annual Reports.

Much of the OPEC member behaviour in setting and breaking oil
production quotas is also related to revenue smoothing. That is, if oil
prices fall, they sell more oil. If many OPEC members pursue this
strategy, falling oil prices will cause overproduction. This drives oil
prices even lower, creating a pro-cyclical supply response: oversupply
begets more supply. The result is a boom and bust oil economy. While
this problem occurs at the production level, it can easily extend to the
level of capital expenditures. It is in direct odds to optimal real option
strategy.

IV.  Modelling Real Options with Decision Trees

One way to model real options is with a decision tree, which
incorporates decisions by nature (that is the up-down moves of the
underlying asset price) and decisions by the manager (developing,
abandoning or adjusting production rates, for example) in a sequential
manner.

(1) Decision trees are based on a sequence of alternating decisions
by a manager (denoted by a square node) and Nature (denoted by a
round node as the probability of going up or down).

(2) Decision trees are solved by working backwards from the tips of
the tree at the farthest date.

(3) Managerial decisions are made by taking the the most highly
valued decision at the node, and the associated value is taken back
to the preceding node.
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FIGURE 5.— Decision tree to develop a gold mine.

(4) Nodes corresponding to risky choices by Nature are valued by
taking the expected value from the two alternatives and discounting
for the time value of money.

A real option decision tree to develop a gold mine is shown in figure
5. It is based on an initial gold price of $300 per ounce and reserves of
1 million ounces of gold. The gold can all be immediately produced for
a combined capital and operating cost of $290 million. Gold prices will
rise by 20% over a year with a probability of 62% and they will fall by
20% with a probability of 48%.10 The riskless discount rate is 6% and
the company can develop now, or defer for either one or two years, after
which point the opportunity to invest is lost.

If immediately developed, the NPV is $10 million. But the optimal
value of the real option is larger: it is $49.2 million. This is determined
in the decision tree in figure 5. The only situation in which the mine

10. We will go into greater detail on how to set these probabilities in section VII.
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would be developed is at date 2 if the price rises twice. In all other
situations, it is optimally delayed or (at date 2) abandoned. The extra
value accruing to the real option over the NPV is that the delay allows
the manager to learn information and reduce downside risk, while
retaining upside potential.

This decision tree models a very simple problem with two periods
and only a decision of “develop” or “delay” for the manager. Yet the
decision tree is quite complex and time consuming to build and analyze.
We clearly would like to put more time periods into realistic problems
and include more flexibility, including delay, abandon, expand,
rebalance input vectors and output vectors.

The problem with the decision tree is that it combines information
about Nature’s risk outcomes and the manager’s decisions. The manager
would generally like to leave the risk modelling to a numerical analyst
or a specialist in the construction of computational engines such as
binomial lattices, numerical partial differential equations or simulation.
We discuss these approaches in section V. The manager would prefer
to leave that part of the analysis to someone else and focus on what is
unique about the project at hand: the choices the manager can make. We
discuss the manager’s approach next.

A. Modelling Flexibility with Influence Diagrams

The influence diagram focuses on the choices or flexibility that the
manager has and leaves the risk analysis hidden. The manager only
needs to describe the parameters of the risk process once and then leave
that to a computational engine.11

Figure 6 shows a influence diagram for our mine development
option that is expanded to include abandonment. We have three
operating modes:

(1) Undeveloped

(2) Operating

(3) Abandoned.

11. This is not the only way to decompose a real option problem into smaller parts.
Gamba (2003) uses a compound option approach, where the building blocks are simple call
and put options. When a compound option is exercised, the owner gets another compound or
simple option.
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FIGURE 6.— The influence diagram for the gold mine development
real option.

The curved arrow edges describe the transitions we can make:

(1) Delay development

(2) Develop

(3) Operate a developed mine

(4) Abandon a developed mine

(5) Abandon an undeveloped mine.

Some information needs to be associated with each operating mode. The
following information is relevant:

(1) Cash payoff that will occur if the project ends while in this mode.

(2) Whether this is a beginning or an ending mode.

Most of the modelling in the influence diagram occurs with the
transitions. Associated with a transition is the following information:

(1) Criteria under which the transition can occur.
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(1.1) Perhaps the transition can only be made early or late in the
project life, or perhaps it cannot be made unless some random
variable is in some target range.

(1.2) Some of these constraints are not binding, given the desire
to optimize the value of project, so they can be ignored.

(1.3) For example, it may seem to make sense to prevent a
decision to enter a phase to sell a product if the random demand
for the product is not positive, but this is not likely to be a
binding constraint if it is possible to do nothing, which is a more
valuable decision.

(2) Cash flows associated with the transition.

(2.1) These can be lump-sum costs, such as an development
costs, or flow costs that occur throughout the transition time
period.

(2.2) The cash flows can be a function of stochastic variables,
such as spot prices that represent revenues or expenses or
stochastic quantity variables representing uncertain demand or
supply.

We model the manager’s flexibility by the constraints and cash
flows of the constraint edges, as well as the source and terminal modes
of each transition edge. Not all modes have to be connected directly to
each other and irreversibility is represented by a one-directional
transition edge.

V.  Approaches to Assessing Real Options Strategy and Value

There are four basic computational methodologies for assessing real
options value and strategy. They are compatible with each other, but in
different situations, one technique may be more useful than another. The
focus has to be on using the simplest technique that gives useful results.
Few organizations have the tolerance that academicians have for
precisely correct solutions to unimportant problems. On the other hand,
organizations should be denied the excuse that real options are too
complex to be worth implementing. It is clear that real options strategy
is essential to unlock the full value from modern organizations.
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Many of the simplest formulas are for european options, which are
options that can only be exercised at a specific maturity date.
Unfortunately, most real options are american options, which require
the manager to decided when to exercise the real option. Solving for the
early exercise criterion is often the biggest part of the problem. For
simplicity, we will use the traditional terminology “call” for a
development option and “put” for an abandonment option. There are
many other types or real options, such as options to manage a plant or
resource extraction rate.

Here are the four basic methodologies:
Closed-form analytic solutions are the best approach to use when

they are available. These include the Black-Scholes formulas for
european put and call options, and the solutions for perpetual american
put and call options on normally or lognormally distributed underlying
assets. Most real options do not fit these categories perfectly, but they
are useful limiting cases and valuation bounds for some real options that
do occur naturally. We will review these briefly.

Numerical solutions to partial differential equations (PDEs) are
generally useful only in academic real option settings because the
practitioners generally face too great a variety of problems to be justify
building a custom PDE solution for every real option they come across.
There are some software tools coming out now to solve broad classes of
real option problems and some of them employ solutions to PDEs, but
the user never knows the solution algorithm, and doesn’t need to know
the details. We will leave this methodology aside in this paper because
we don’t have the time or space to study numerical solutions of PDEs,
and a practitioner wouldn’t need to know this to employ a software tool
using PDEs.

Lattice or tree models for real options are useful because they are
easy to understand and work well for american or european options. If
there is only one risk driver, they can be implemented on a spreadsheet,
where one axis is time and the other is the price level or value of the
underlying risk driver. We will briefly review these models. Their
limitations arise when we have multiple risk drivers. The solution to
these models is generally too messy to implement in a spreadsheet and
requires a programming language, or a numerical programming
language like Matlab, Maple or Mathematica. The multi-dimensional
lattice models approach the complexity of the numerical solution of
PDEs. We will discuss lattices with one risk driver only. The optimal
trigger strategy and option value is computed the backward recursion of
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a decision tree, which is also known as the Bellman equation of
dynamic programming. This replaces the smooth pasting condition of
optimality.

Simulation models have been used for many years to analyze
european options, but it was generally felt that they would not be useful
in analyzing american options. This is because simulation is a forward
approach, with the underlying asset starting at a fixed price and
undergoing random increments going forward. On the other hand, the
Bellman equation requires a backward recursion. However, we now
know that simulation can be efficiently used to estimate the conditional
expected payoffs and continuation values that would be used in a lattice
approach. Moreover, simulation can easily handle multiple risk drivers
and complex processes, which is a distinct advantage over the lattice
approach. We will discuss the simulation approach as well.

A. Stochastic Processes for Real Options Risk

It is simplest to describe a stochastic process for the underlying “asset”
price Pt by a diffusion equation:

(3)( ) ( ) ,dP P dt P dα σ ω= +
where

( ) Drift or growth rate of P Pα =

( ) Standard deviation for one unit of time P tσ =

Stochastic process.tω =

The stochastic process {ωt|t $ 0} could be a Poisson jump process or a
variety of processes, but we will restrict ourselves to the assumption that
it is normally distributed Brownian motion with zero drift and unit
variance per unit time:

( )1 0,1 .t t Nω ω −− ∼

If we have multiple stochastic processes, we model them with different
underlying Brownian motions ω1, ω2, . . . and we must specify the
correlation between them ρi,j .

By, taking different functional forms for the drift and standard
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deviation, we get common stochastic processes, such as:
Lognormal Diffusion

(4)( ) ( )P PP P and P Pα α σ σ= =

Normal Diffusion

(5)( ) ( )P PP and Pα α σ σ= =

Ornstein-Uhlenbeck Mean Reverting Process

(6)( ) ( ) ( ) ( )0 PP P and Pα λ μ λ σ σ= − > =

Hybrid Mean Reversion or Integrated Geometric Brownian Motion

(7)( ) ( ) ( ) ( )0 .PP P and P Pα λ μ λ σ σ= − > =

The lognormal diffusion and hybrid mean reversion process standard
deviation is the product of a volatility σP and the price itself, which
ensures that the price P never becomes negative if it starts with a
positive value.12

The normal diffusion and Ornstein-Uhlenbeck (OU) processes both
can give negative “prices” P, which is often a problem with models of
financial derivatives, because assets are often assumed to have limited
liability. However, the underlying risk driver for a real option does not
need to be a marketed asset. Indeed, for a development option, there
usually is no market for the asset until it is developed. This is another
example where real options analysis is more general than financial
options analysis.

Similarly, mean-reversion is generally a poor model for the price of
a traded company share, because it would provide speculative arbitrage
opportunities for an investor who sells the share short when its price is
above the long-run mean (P > µ), expecting to profit from the
downward drift in price. Similarly, a profitable speculation is to buy
when the share price is below the long-run mean (P < µ). However,

12. It is not trivial to verify this for the hybrid mean reversion process, but Robel (2001)
has shown this in a working paper. He calls it Integrated Geometric Brownian Motion
(IGBM).
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these are good processes for modelling many commodities, particularly
metals and energy commodities because they are created and consumed
by capital-intensive processes, and the capital adjustments when spot
prices are above or below the long-run mean take time to build or
depreciate. For example, suppose the long-run mean for oil price is $35,
but the spot price of oil is $20. Then, petroleum companies will delay
their drilling programs, knowing that it is better to wait until prices are
higher. This creates a shortage of oil, which tends to gradually increase
oil prices towards the long-run mean.13 Meanwhile, consumers of oil
will buy cars that are less energyefficient, and build homes and factories
that are less energy efficient. This increases demand and tends to
gradually increase price as more and more of these energy-intensive
consumption processes are put in place.

The profitable speculation that would take place for a
mean-reverting stock does not take place for a mean-reverting
commodity because there are storage costs and convenience dividends
for the commodity that offset the anticipated speculative profit. When
the commodity price is above its long-run mean, there is a significant
convenience value or dividend to be earned by the holder of spot
commodity that is not earned by someone who has a futures or forward
contract that delivers the commodity at a later date. The convenience
value represents the value of being able to use the commodity if there
is a sudden need for it, or a sudden stoppage in the delivery system for
it.

B. Convenience Dividends

Modelling convenience dividends is most easily discussed in an
equilibrium context. Consider the traditional capital asset pricing model
(CAPM) or single-factor arbitrage pricing theory (APT). For example,
suppose we have a lognormal diffusion for the stock price, which pays
a continuous dividend yield of δ and a beta of βP. If the market risk
premium is γ = E[rm – r ] where rm is the market return or APT factor
(per unit time) and r is the riskless return, then the CAPM or APT says
that the expected capital gains rate plus dividend yield equals the

13. The strength of mean reversion is the coefficient λ  > 0. A useful interpretation for
it is the half-life of mean reversion, which is

1/ 2

ln 2
.T

λ
=
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riskless rate plus a risk premium that depends on beta:

.P Prα δ γβ+ = +

Rearranging this equation, we find two equivalent definitions of the
risk-neutral drift rate :α̂

(8).ˆP P Prα δ α γβ= − = −

We call this the risk-neutral drift rate because it is the capital gains
growth or drift rate that would be required by a risk-neutral investor to
hold the stock. That is, the risk-neutral investor requires a capital gains
rate of r – δ, because, when added to the dividend yield δ, this provides
the investor the riskless rate of return. We won’t attempt to reproduce
any of the common arguments about risk-neutral asset pricing, but we
just point out that assets and derivatives or options on those assets can
be correctly priced by using the risk-neutral distribution of returns to get
riskneutral expected payoffs and then discounting those payoffs at the
riskless rate of return. The risk-neutral expected payoffs are thus
certainty-equivalents, so that modern derivative pricing is done using
certainty-equivalents rather than risk-adjusted discount rates. Equation
(8) shows that there are two equivalent ways of determining the
risk-neutral drift rate for the lognormal diffusion:

(1) If the dividend yield δ on the asset is observable, then the
risk-neutral drift rate on a lognormally distributed asset is r – δ.

(2) If the dividend yield on the asset is not observable, but the
systematic risk βP and expected growth rate αP are both observable,
then the risk-neutral growth rate can be calculated as the true growth
rate minus a risk adjustment: .ˆP P Pα α γβ= −

Note how the approach implicitly defines the convenience dividend
yield δ. This is important in real options where the underlying asset may
be untraded and not have an explicit dividend. For example, we can use
the second approach if P is the quantity sold of the product that might
be produced when the real option is exercised. This is a quantity rather
than a formal price, so the dividend is not directly observable. However,
we may be able to model the growth rate in sales and the systematic risk
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of sales, βP, which is a function of the volatility and correlation with the
systematic market factor.

Now, we will extend this to more general stochastic processes.
Multiplying both sides by P gives a risk-neutral drift  in terms ofˆPPα
dollar flow:

.ˆP P PP rP P P Pα δ α γβ= − = −

Note how the systematic risk, in dollar terms is βPP, and is proportional
to the total risk, also in dollar terms: σPP. This is because the risk in P
comes through the diffusion term dω and that is the only source of joint
variation with the systematic market factor. Thus, we can write the total
systematic risk as β(P)/βPP and the general risk-neutral drift for the
general diffusion (3) is thus:

(9)( ) ( ) ( ).ˆ P P Pα α γβ= −

We will use this risk-neutral drift in the remainder of our discussion of
real options analysis. 

It is interesting to see what the implied convenience dividend is for
our two mean-reverting processes:

( ) ( )ˆP rP Pδ α= −

( ) ( )                                               .rP P Pλ μ γβ= − − +

For the Ornstein-Uhlenbeck mean-reverting process, beta takes the form
of a constant (like the standard deviation) that is measured in dollars per
unit time: β(P) = β0. For the hybrid meanreversion process, the beta
takes the traditional form of the lognormal diffusion: β(P) = βPP.

VI. The Fundamental PDE for Valuing Assets and Real
Options

Suppose we have a real option of value W(P, t) that depends on an
underlying asset of value P. It’s value will depend on time t, as well, if
it has a finite time to maturity (maturity decay effects). Suppose that the
owner of the real option receives a dividend D(P). For example, we may
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have a real option to convert agricultural land to urban land, so the
dividend paid to the real option owner  is the net cash flow to be
received on agricultural operations. In many cases it is zero. Then, we
have the fundamental risk-neutral PDE for the valuation of the real
option:

(10)
( )2 2

2 .ˆ
2

P W W W
rW D

P P t

σ α∂ ∂ ∂= + + +
∂ ∂ ∂

This equation has the following risk-neutral interpretation. The left side
is the rate of return that a risk-neutral investor requires for an
investment of value W. The right side describes the total return the
investor expects to get, and the two must be equal in equilibrium. The
first term on the right is the dividend payout that the owner of the option
expects to get. The second term is the so-called Itô adjustment that
reflects the drift in the value of W that the investor can expect from the
interaction of the curvature of the function W with the variance of the
underlying asset.14 The third term describes the growth in the option
value that comes from risk-neutral growth in the underlying asset. The
final term represents the direct growth (time-dependence) or decay in
the option. The final term is zero for perpetual options, as there is no
decay arising from the approach of the option to maturity.

To determine the value of a real option, we only need to describe the
option payoff at some points, which are often called boundary points.
Typical boundaries describe the payoff at the time of exercise for the
option.

For example, a development or call option has boundary conditions
as shown in figure 3. That is if the project is developed when the
underling asset price is P for a development cost of K, the payoff gives
the boundary condition.

( ) { } development max 0, .W P P K= −

This is called the value-matching condition, as it says that when the
option transitions from one state to another, (undeveloped to
developed), the option values for the two states are equal. For a

14. This term is related to Jensen’s inequality, which says that the expected value of a
function of a random variable exceeds the function evaluated at the expected value of the
random variable, if the function is convex.
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european option, this payoff only occurs at the maturity date T, so we
have

( ) { }, max 0, .T TW P T P K= −

For an american option, we also need a condition to determine the
boundary between the states where the option should be developed from
those where it should be delayed. This is an optimization condition, and
is sometimes called the smooth-pasting condition. It says that the option
value, as a function of the underlying asset value, is tangent to the
payoff function. The basis for this condition is apparent in figure 3,
where we consider the solution of the PDE (10) subject to the
value-matching condition and the management decision to develop the
project as soon as the underlying asset value rises to some hurdle or
trigger value P†. For the hurdle P† = $160, for example, we see that the
solution to the PDE dips below the payoff function for development, so
it cannot be optimal. For example, the figure shows that the option value
with this development policy is below the value that would be received
if the option is developed at P* = $266. Thus, the best policy we can
have is one where the option value function does not dip below the
payoff at exercise. Hence it must be tangent.15

The smooth-pasting condition characterizes the optimal exercise or
trigger point P* for an arbitrary payoff function Π (P, t):

(11)( ) ( )*, ,P PW P t P t= Π
where

( ),P

W
W P t

P

∂=
∂

and

( ), .P P t
P

∂ΠΠ =
∂

Note that for a development option ΠP (P, t) = max{0, P – K}, so in the
region where there is a positive payoff (needed to justify early
development), ΠP = 1.

15. Note that an option value function that is always above the payoff function is
infeasible, because the option value must be on the payoff boundary when the option is
exercised.
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Α. Analytic Solutions for Common Real Options

We can solve these partial differential equations and the appropriate
boundary conditions to get solutions for some real options problems.

Black-Scholes Formula for European Call and Put Option on
Lognormally Distributed Asset

We provide a general solution for a dividend yield δ. Let the call value
be WC(P, t) and the put value be WP (P, t) for a european option expiring
at time T > t, with exercise price K. Define

( ) ( )( )2

1

ln / / 2P

P

P K r T t
d

T t

δ σ
σ

+ − + −
=

−

2 1 .Pd d T tσ= − −
Then

(12)( ) ( ) ( ) ( ) ( )1 2, T t r T tCW P t Pe N d Ke N dδ− − − −= −

(13)( ) ( ) ( ) ( ) ( )2 1, .r T t T tPW P t Ke N d Pe N dδ− − − −= − − −

If we want to substitute , then we can rewrite these equationsˆP rα δ= −
as:

( ) ( )( )2

1

ln / / 2ˆP P

P

P K T t
d

T t

α σ
σ

+ + −
=

−

( ) ( ) ( ) ( ) ( )( )ˆ
1 2, Pr T t T tCW P t e Pe N d KN dα− − −= −

( ) ( ) ( ) ( ) ( )( )ˆ
2 1, .Pr T t T tPW P t e KN d Pe N dα− − −= − − −

Perpetual American Call and Put Options on Lognormally Distributed
Asset

The general solution to the valuation PDE (10) given the lognormal
distribution parameters in equation (4) is
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(14)( ) 1 2
1 2 ,W P A P A Pν ν= +

where ν1 is the positive root and ν2 is the negative root of

(15)
2

2 2 2

1 1 2ˆ ˆ
.

2 2P P P

rα αν
σ σ σ

⎛ ⎞= − ± − +⎜ ⎟
⎝ ⎠

For a development option, A2 = 0 and for an abandonment option, A1 =
0. Otherwise, Ai is determined by the payoff at the time the option is
exercised and a smooth pasting optimality condition. First, ignore the
smooth pasting condition and assume that the option is developed when
the underlying asset price first hits some trigger price P†.

For the development (call) option, development occurs the first time
that the underlying asset value P hits P† from below, and the value
matching condition at exercise gives A1 = (P† – K)(P†)–ν1.

Thus, using the trigger development price P†, the perpetual american
call option has the value

(16)( ) ( )
1

†
†, .C P

W P t P K
P

ν
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

But, we can choose the hurdle price P† to maximize A1, which
maximizes the value of the call option. This is equivalent to the smooth
pasting condition and is P† = PC* where

(17)* 1

1

.
1

C K
P

ν
ν

=
−

Similarly, for the abandonment (put) option, we have the optimal
solution

(18)( ) ( )
2

*
*, ,P P

P

P
W P t K P

P

ν
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

where

(19)* 2

2

.
1

P K
P

ν
ν

=
−
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VII.  The Lattice or Tree Approach

The lattice approach to evaluating real options involves using a
Bernoulli process with up and down jump moves at each step to
approximate the stochastic process for the underlying “price” P. The
jumps are spaced at time intervals of length h and a more precise
approximation comes from setting h small. There are three parameters
to the Bernoulli process:

(1) The size of the up move, and its form (additive or multiplicative)

(2) The size of the down move

(3) The risk-neutral probability of the up move.

We choose these parameters to match the form and first two
moments of the diffusion equation for the price. Recall equation (3):

( ) ( ) .dP P dt P dα σ ω= +

where we can choose various functional forms and parameterizations for 
α(P) and σ(P).

Α. Geometric or Multiplicative Risk

If the diffusion term has multiplicative risk with volatility σP , or σ(P)
= σPP, then we model the up and down move as being multiplicative.
That is, if we start with price Pt, then we model the next price Pt+h as
either taking the value uPt or dPt . By choosing

P hu eσ=

(20).P hd e σ−=

we get a very good approximation to the diffusion term σ(P)dω as h
becomes small. Then, we choose the risk-neutral probability of an up
move  so that the drift term  is well-approximated:π̂ ( )ˆ P dtα

( ) ( )1ˆ ˆ ˆP P h uP dPα π π+ = + −
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(21)( ) ( ) / 1ˆ
.ˆ

P h P d
P

u d

απ + −=
−

This is an adequate model in general and is just about the best we can
get for the hybrid mean-reversion model.16 In the hybrid mean-reversion
model, we have α(P), and hence  and  varying throughout( )ˆ Pα ( )ˆ Pπ
the tree.

For a lognormal diffusion,  , which suggests a/ˆ ˆP PP rα α δ= = −
risk-neutral probability of . However, we can( ) ( )1 /ˆP d u dα + − −
model the risk-neutral probability a little more precisely by noting that
a risk-neutral investor would expect a growth factor of  over theˆPheα

time step, so that the risk-neutral probability is better written as

(22)
ˆ

.ˆ
Phe d

u d

α

π −=
−

These two representations of converge as h 6 0.π̂

Β. Additive Risk Models

If the standard deviation in the diffusion term of equation (3) is constant 
σ(P) = σP , then we have an additive risk structure. We model the
Bernoulli jumps as additive deviations, whereby Pt+h can take the value
Pt + U or Pt + D where

( )PU hσ=

(23)( ).PD hσ= −

We use equation (9) to calculate the risk-neutral drift  , noting thatˆPα
the additive risk model makes the systematic risk measure constant:
β(P) = βP. The growth term α(P) takes the constant form α(P) = αP for
the additive diffusion and the mean-reverting form α(P) = λ(µ  – P) for

16. Note that for hybrid mean reversion, the risk-neutral probability calculated in this
manner might not be between 0 and 1. At extreme edges of the tree (only reached with low
probability), the mean reversion to jump towards of the center of the tree may be so high that
the probability is outside the interval [0, 1]. In general, it is satisfactory just to truncate it at
0 or 1.



109Some Important Issues Involving Real Options: An Overview

the Ornstein-Uhlenbeck model.
We set the risk-neutral probability so that the Bernoulli process has

the right risk-neutral drift over one step:

( ) ( ) ( )( )1ˆ ˆ ˆP P h U P D Pα π π+ = + + − +

( ) ( )ˆ
ˆ

P h D
P

U D

απ −=
−

(24)
( )( )0                                              .
P h D

U D

α γβ− −=
−

C. Recursive Computation of Option Values on a Lattice

Having specified the dynamics of the Bernoulli model in on step of the
lattice, we can combine them into a whole lattice of up and down
moves. This gives us a specialized version of the decision tree because
the branches of the tree recombine. That is, at a given point in time, we
can fully describe the state by knowing the total numbers of up jumps
and down jumps — we do not need to know the order of up and down
jumps. Thus, an up-jump followed by a down-jump leads to the same
state as a down-jump followed by an up-jump.

To compute option values and strategy, we take the standard notion
of a decision tree whereby we start at the tips of the tree, which
correspond to the terminal date of the option and move back one step
earlier in time time by computing the continuation value of the option
as:

(25)( ) ( ) ( )( ) ( )( )1 .ˆ ˆrh
u de P W P P W Pπ π− + −

Here, the values Pu and Pd correspond to the up and down jump values
starting at price P as given in either equation (20) or (23), for
multiplicative and additive processes, respectively. The continuation
value is the value of the option if it is continued in the same operating
state (exercised or unexercised) at the end of the period as at the
beginning.

We then compare the continuation value to the payoff that
corresponds to exercising the option at that point and assign the larger
of these to the option value W(P). This optimization is known as the
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Bellman equation or the principal of optimality in dynamic
programming. The optimum will satisfy the smooth pasting condition
that characterizes optimal exercise, but we do not need to compute any
partial derivatives in this analysis. Implementing the smooth pasting
condition directly is usually quite difficult, but the Bellman equation is
easy to implement.

The payoff can be the payoff to develop max{0, P – K} or abandon
max{0, K – P}, or any general payoff that is contingent on the
underlying price P, bearing in mind that P could represent a quantity of
goods, degree days of heat, etc.

To summarize, we calculate the option value recursively to earlier
points in the tree with the principle of optimality or Bellman equation:

( ) ( ) ( )( ) ( ){max Exercise Payoff , ˆrh
uW P P e P W Pπ−= +

(26)( )( ) ( )1 .ˆ }dP W Pπ−

VIII.  The Least-Squares Monte Carlo Approach

The Bellman equation (26) recursively computes the optimal real option
value by comparing the continuation value as in equation (25) to the
proceeds of switching to the next state (exercising the option in our
example). The continuation value is the present value of the risk-neutral
expected payoff from continuing for a further period in the same mode
(e.g. undeveloped). The Bellman equation determines value as well as
optimal strategy or operating policy. The lattice method is simply one
technique for computing estimates of the risk-neutral expected value of
continuing in the same mode and switching modes, each conditional on
being in a given point in the lattice. This suggests that if we can find any
other way of estimating conditional expectations, we can still perform
the Bellman comparison and determine option value and strategy.

Moreover, our discussion in subsection III, A, shows that we can
accurately estimate the optimal option value even if we make fairly
large errors in the specification of the precise trigger boundary. If we
use these approximately correct trigger strategies with a valuation
technique that is quite accurate given these trigger strategies, then we
can still accurately estimate option value and determine strategies that
are good enough to achieve value close to the optimum.

These observations enable us to employ the least-squares Monte
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Marlo (LSM) approach. The idea is to estimate the conditional expected
continuation value from a simulation of the whole distribution, instead
of using just a Bernoulli lattice.17 By noting the optimal decisions, we
can map out the trigger boundary for the transition decisions. Then, we
can go back to the original simulation to compute the present value of
the (risk-neutral) expected payoff arising from the trigger strategy along
each sample path. Even if we don’t compute the trigger boundary
exactly right, we will be able to compute the real option value quite
accurately, and we will have a description of a trigger strategy that
achieves a value close to the optimum.

The traditional Monte Carlo simulation for option valuation (first
introduced by Boyle (1977)) is a forward-looking technique, whereas
dynamic programming implies backward recursion. Many approaches
have been recently proposed to properly match simulation and dynamic
programming: these include Bossaerts (1989), Cortazar and Schwartz
(1998) and Broadie and Glasserman (1997).

We illustrate the Longstaff and Schwartz (2001) least squares Monte
Carlo (LSM) method. It is based on a Monte Carlo simulation and uses
least squares regression to estimate the continuation value of the
Bellman equation and hence the optimal policy of the problem. Gamba
(2003) extends the LSM approach to the real options problem with
many interacting real options many state variables, including optimal
switching problems.

In what follows we provide an introduction of the LSM approach for
the real options valuation the option to switch modes of operation.

Α. A Monte Carlo valuation of the option to switch operating mode

Consider a switching problem of opening and closing a plant as
described in Brennan and Schwartz (1985) and Dixit (1989b). The plant
produces a commodity that has a stochastic spot price P, which follows
the lognormal diffusion (4) with risk-neutral drift rate  as in (22).α̂
There are two operating modes: closed z = c, with no production, but a
maintenance cost of m per year, and open z = o, with a production rate
q per year and unit operating cost C. Production can be suspended
(switching from o to c) at a switching cost So,c , or it can be restarted

17. In section VII we estimated the continuation value using the risk-neutral probability
. With the LSM, we will estimate the continuation value using a regression or least-squaresπ̂

projection. In each case, we want to estimate the continuation value as the present value of
the expectation of continuing in a given state.
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(switching from c to o) at a switching cost Sc,o.
Consider the operation of the facility over the time span [0, T], and

divide it into N intervals of length h = T/N. The dynamics of the state
variable are simulated by generating K paths for P. The operating cash
flow for one time step when the commodity price is P, the starting mode
z and the ending mode ζ, is X(P, z, ζ) where

( ) ( ), ,X P o o q P C h= −

( ), ,X P c c mh= −
(27)

( ) ,, , o cX P o c mh S= − −

( ) ( ) ,, , .c oX P c o q P C h S= − −

Starting at the operating mode z 0 {o, c}, let the value of an operating
facility be W(P, t, z), and the optimal strategy be ψ(P, t, z) 0 {o, z}. We
recursively compute these values in a backwards fashion from t = T to
T – h, T – 2h, . . . , 0 by an extension of the Bellman equation (26):

(28)( )
{ }

( ) ( )[ ]( )
,

ˆ, , max , , , ,rh
t t t t ho c

W P t z X P z e E W P t h
ζ

ζ ζ−
+∈

= + +

(29)( )
{ }

( ) ( )[ ]( )
,

ˆ, , arg max , , , , .rh
t t t ho c

P t z X P z e E W P t h
ζ

ψ ζ ζ−
+∈

= + +

For the optimal strategy in (29), we take the convention that the mode
is unchanged if the two maximands have the same value. Here, the
expectation with respect to the the risk-neutral distribution [ ]Ê •
generalizes the risk-neutral probability in the lattice approach andπ̂
corresponds to the dynamics of P with the drift rate .α̂

To this point, we haven’t proposed anything new. The special insight
is to replace the one-period conditional estimation  in equations[ ]ˆ

tE •
(28) and (29) with approximations based on a least squares projection
of the time t + h values on information that is known at time t, such as
polynomials in Pt. These will be good enough estimates of the
conditional risk-neutral expectation to form a good strategy ψ(P, t, z).
There are many bases besides polynomials that we can use, but here we
will use the polynomials 1, P, P2 and P3.
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We implement this least-squares projection at each point in time t,
using a backwards recursion from t = T. Suppose we have the optimal
strategy policy ψ(Pτ, τ, z) for τ  = T, T – h, . . . , t + h, any z 0 {o, c} and
any Pτ  along a path on the simulation. Then we can estimate the time-t
expectation of next-period plant value W(Pt+h, t + h, ζ) as a least-squares
projection onto the polynomial basis of the present value{ }2 31, , ,t t tP P P
of all cash flows along the sample paths through Pt+h, given that the
plant is in operating mode ζ at time t + h. That is, for each simulation
path ω that goes through Pt+h, we have a commodity price sequence

. Also, going forward recursively from time t + h in2, , . . . ,t h t h TP P P+ +
operating mode ζ, we can use the strategy ψ to determine the sequence
of operating modes for times t + h, t + 2h, . . . , T along the simulation
path ω:

( )
( )( )

2 2

3 3 2

Time Commodity Price                 Strategy

2 , 2 ,

3 , 3 , , 2 ,

t h

t h t h

t h t h t h

t h P

t h P P t h

t h P P t h P t h

ζ
ψ ζ

ψ ψ ζ

+

+ +

+ + +

+
+ +
+ + +
# # #

Thus, along each path ω, we can determine the sequence of cash flows
X(Pt+h, z, ψ(Pt , t, z)), . . . for times t + h, t + 2h, . . . , T. Denote the
present value, discounted to time t, of this stream of cash flows by Φ (t,
ζ, ω). Now, this value is not known at time t because it uses information
about the path beyond time t. But, we can estimate its conditional
expected value by a least squares regression of all of these values on
some explanatory functions of the observable Pt, say the polynomials 1,
P, P2, and P3. That is, for a given time t, consider selecting a strategy
starting in operating mode ζ for time t + h. We can consider a
population of all possible paths ω and use as explanatory variables the
polynomials in P = Pt , where the random variable P depends on t and
ω. The dependent variable is the present value Φ (t, ζ, ω) of the payoffs
obtained when starting from this mode ζ at time t:

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3 , ,, , , , , , .tt t t P t P t P ζ ωζ ω φ ζ φ ζ φ ζ φ ζ εΦ = + + + +

(30)

Given the values of these regression coefficients φi(t, ζ), we can form a
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conditional estimate of the option continuation values for strategies ζ 0
{o, c}, discounted to time t, which we will denote :[ ]rh

te E W− �

( )[ ] ( ) ( ) ( ) 2
0 1 2, , , , ,rh

t t h t te E W P t h t t P t Pζ φ ζ φ ζ φ ζ−
+ + = + +�

(31)( ) 3
3 , .tt Pφ ζ+

We will substitute this expected value into the Bellman equation (29)
to get the approximately optimal strategy ψ:

(32)( )
{ }

( ) ( )[ ]( )
,

, , arg max , , , , .rh
t t t ho c

P t z X P z e E W P t h
ζ

ψ ζ ζ−
+∈

= + +�

This fully describes the approximation of the optimal operating strategy.
One might think that it is also a good idea to use ( )[ ], ,t t hE W P t h ζ+ +�
in equation (28) in order to recursively compute real option values back
to t = 0. However, each of these estimates  of option value are[ ]tE W�
computed with error, and using them in the Bellman equation with the
maximization amounts to taking a convex function of them. By Jensen’s
inequality, this will result in an over-estimate of true real option value
W. To avoid this bias, we can simply compute the option value W as the
average over all simulation paths of the present value of the payoffs Φ.
That is

(33)( ) ( ) ( )( )
1

1
,0, , , 0, , .

K
rhW P z e X P z z z

K ω
ω−

=
= + Φ∑

This gives a starting value for plants initially in each of the open and the
closed states.

B. Example of the Monte Carlo Method

Consider this model with parameters r = 4%, T = 4, q = 10, m = –1, Sc,o

= 8, So,c = 4 and C = 0.8. σP = 35%, δ = 0.03, so that  = 0.04 – 0.03 =α̂
1%. We take K = 16 paths and N = 4 time steps so that h = T/N = 1.
Table 1 shows the simulated sample paths for the price P.

We apply backward induction to solve this problem. At n = 4 (t = T
= 4), the payoff of the open facility is
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( ) ( ) ( ){ }4 4 4, , max , , , , ,X P o X P o o X P o cψ =

( ){ }4 ,                                     max , ,o cq P C h mh S= − − −

whereas the payoff of the closed facility is

( ) ( ) ( ){ }4 4 4, , max , , , , ,X P c X P c o X P c cψ =

( ){ }4 ,                                     max , .c oq P C h S mh= − − −

These payoffs are shown in the 6th columns of the upper (initially open)
and lower (initially closed) panels of table 2. The path-wise optimal
discounted values discounted to t = 3, Φ(3, ζ, ω) are shown in the 5th
columns. The OLS regressions (30) of  Φ(3, ζ, ω) on the polynomial in
P are shown below the panels for open and closed, respectively. From
equation (31), we use these OLS regressions to get the approximate
discounted expected continuation values , ζ 0 {o, c},( )[ ]3 4,4,re E W P ζ− �
as shown in the 4th columns of each panel.

TABLE 1. Commodity product price dynamics P (16 paths and 4 time steps), with
initial price P0 = 1.

t

Path 1 2 3 4

1 0.9538 1.3495 1.0589 1.1922
2 0.7580 0.5668 0.4004 0.3088
3 1.2596 0.7613 0.6636 0.5982
4 1.0303 0.9541 1.1432 0.9328
5 0.6719 0.5686 0.4006 0.3701
6 1.5183 1.0737 0.6699 1.0892
7 1.0514 1.1889 1.0831 0.8322
8 1.5942 2.5500 2.3679 1.4038
9 0.9463 0.6037 0.6944 0.5566
10 1.1907 1.4373 1.8365 2.1491
11 0.7166 1.0700 1.1081 1.1093
12 0.8761 0.8538 0.6432 0.7115
13 1.3433 1.4328 1.8356 1.7929
14 0.5945 0.7587 1.0976 0.6093
15 0.8585 0.6852 0.6789 0.7975
16 0.5662 0.3195 0.3105 0.4728
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TABLE 2. Computations at t = 3.

Open at start of t = 3, z = o

Bellman Optimality X(Pt , o, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 43E�
1 4.639 –5.529 2.050 3.76 3.922
2 –6.974 –5.784 –2.977 –4.719 –4.912
3 –3.370 –6.644 –2.006 –1.939 –2.018
4 6.537 –5.083 3.105 1.276 1.328
5 –6.972 –5.785 –2.977 –4.130 –4.299
6 –3.261 –6.646 –1.960 2.778 2.892
7 5.181 –5.405 2.350 0.309 0.322
8 22.299 –5.534 6.620 5.801 6.038
9 –2.834 –6.643 –1.778 –2.338 –2.434
10 20.204 –2.160 9.839 12.962 13.491
11 5.744 –5.273 2.663 2.972 3.094
12 –3.713 –6.635 –2.145 –0.851 –0.885
13 20.191 –2.160 9.835 9.540 9.930
14 5.507 –5.329 2.531 –1.832 –1.907
15 –3.106 –6.646 –1.895 –0.024 –0.025
16 –7.720 –5.065 –2.825 –3.144 –3.272

e–rh [W(P4, 4, o)] = 0.1852 – 16.7757 P + 25.0070 P2 – 7.0842 P3
3E�

Closed at start of t = 3, z = c

Bellman Optimality X(Pt , c, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 43E�
1 –3.361 –1.529 –0.529 –0.961 –1.000
2 –14.974 –1.784 –0.784 –0.961 –1.000
3 –11.370 –2.644 –1.644 –0.96 –1.000
4 –1.463 –1.083 –0.083 –0.961 –1.000
5 –14.972 –1.785 –0.785 –0.961 –1.000
6 –11.261 –2.646 –1.646 –0.961 –1.000
7 –2.819 –1.405 –0.405 –0.961 –1.000
8 14.299 –1.534 –0.534 –0.961 –1.000
9 –10.834 –2.643 –1.643 –0.961 –1.000
10 12.204 1.840 2.840 5.275 5.491
11 –2.256 –1.273 –0.273 –0.961 –1.000
12 –11.713 –2.635 –1.635 –0.961 –1.000
13 12.191 1.840 2.840 1.854 1.930
14 –2.493 –1.329 –0.329 –0.961 –1.000
15 –11.106 –2.646 –1.646 –0.961 –1.000
16 –15.720 –1.065 –0.065 –0.961 –1.000

e–rh [W(P4, 4, c)] = 4.5418 – 20.8286 P + 21.0184 P2 – 5.5440 P3
3E�
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TABLE 3. Computations at t = 2.

Open at start of t = 2, z = o

Bellman Optimality X(Pt , o, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 3 t = 42E�
1 18.679 0.600 13.183 6.108 2.589 3.922
2 –7.269 –7.981 –4.937 –5.727 –5.000 –1.000
3 –2.879 –8.156 –2.492 –3.174 –1.364 –2.018
4 3.252 –6.452 1.711 4.524 3.432 1.328
5 –7.239 –7.993 –4.924 –5.727 –5.000 –1.000
6 7.664 –4.695 4.927 1.420 –1.301 2.892
7 12.189 –2.639 8.299 3.017 2.831 0.322
8 38.361 8.249 20.861 20.637 15.679 6.038
9 –6.605 –8.186 –4.642 –3.261 –1.056 –2.434
10 22.199 2.453 15.826 22.412 10.365 13.491
11 7.524 –4.755 4.824 5.816 3.081 3.094
12 –0.120 –7.538 –0.658 –2.324 –1.568 –0.885
13 22.021 2.358 15.693 19.116 10.356 9.930
14 –2.950 –8.167 –2.538 1.099 2.976 –1.907
15 –4.848 –8.344 –3.700 –1.187 –1.211 –0.025
16 –9.219 –4.141 –4.413 –5.727 –5.000 –1.000

e–rh [W(P3, 3, o)] = 4.3169 – 44.2143 P + 57.5835 P2 – 14.7845 P3
2E�

Closed at start of t = 2, z = c

Bellman Optimality X(Pt , c, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 3 t = 42E�
1 10.679 4.600 5.600 –1.884 –1.000 –1.000
2 –15.269 –3.981 –2.981 –1.884 –1.000 –1.000
3 –10.879 –4.156 –3.156 –1.884 –1.000 –1.000
4 –4.748 –2.452 –1.452 –1.884 –1.000 –1.000
5 –15.239 –3.993 –2.993 –1.884 –1.000 –1.000
6 –0.336 –0.695 0.305 –1.884 –1.000 –1.000
7 4.189 1.362 2.362 –1.884 –1.000 –1.000
8 30.361 12.249 13.249 12.951 7.679 6.038
9 –14.605 –4.186 –3.186 –1.884 –1.000 –1.000
10 14.199 6.453 7.453 14.726 2.365 13.491
11 –0.476 –0.755 0.245 –1.884 –1.000 –1.000
12 –8.120 –3.538 –2.538 –1.884 –1.000 –1.000
13 14.021 6.358 7.358 11.429 2.356 9.930
14 –10.950 –4.167 –3.167 –1.884 –1.000 –1.000
15 –12.848 –4.344 –3.344 –1.884 –1.000 –1.000
16 –17.219 –0.141 0.859 –1.884 –1.000 –1.000

e–rh [W(P3, 3, c)] = 13.5465 – 55.6235 P + 53.8132 P2 – 12.567 P3 + 02E�
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TABLE 4. Computations at t = 1.

Open at start of t = 1, z = o

Bellman Optimality X(Pt , o, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 2 t = 3 t = 41E�
1 4.838 –4.988 3.300 11.149 5.495 2.589 3.922
2 –1.625 –7.084 –1.205 –7.743 –2.332 –5.000 –1.000
3 17.058 1.275 12.462 –3.421 –0.387 –1.364 –2.018
4 7.659 –3.777 5.356 5.827 1.541 3.432 1.328
5 –4.110 –7.572 –2.829 –7.726 –2.314 –5.000 –1.000
6 29.253 9.737 22.070 3.993 2.737 –1.301 2.892
7 8.465 –3.403 5.951 6.636 3.889 2.831 0.322
8 33.127 12.813 25.185 36.642 17.500 15.679 6.038
9 4.571 –5.095 3.108 –5.020 –1.963 –1.056 –2.434
10 14.091 –0.473 10.184 27.656 6.373 10.365 13.491
11 –2.848 –7.350 –2.014 8.182 2.700 3.081 3.094
12 2.140 –5.989 1.379 –1.716 0.538 –1.568 –0.885
13 20.830 3.682 15.396 24.446 6.328 10.356 9.930
14 –6.150 –7.798 –4.095 0.660 –0.413 2.976 –1.907
15 1.554 –6.184 0.969 –2.244 –1.148 –1.211 –0.025
16 –6.849 –7.831 –4.511 –6.614 –5.000 –1.000 –1.000

e–rh [W(P2, 2, o)] = –7.2379 – 5.1135 P + 18.4058 P2 – 1.5311 P3
1E�

Closed at start of t = 1, z = c

Bellman Optimality X(Pt , c, ψ)

Path ζ = o ζ = c e–rh [W] Φ t = 2 t = 3 t = 41E�
1 –3.162 –0.988 0.012 3.462 –2.505 2.589 3.922
2 –9.625 –3.084 –2.084 –2.771 –1.000 –1.000 –1.000
3 9.058 5.275 6.275 –2.771 –1.000 –1.000 –1.000
4 –0.341 0.223 1.223 –2.771 –1.000 –1.000 –1.000
5 –12.110 –3.572 –2.572 –2.771 –1.000 –1.000 –1.000
6 21.253 13.737 14.737 –3.693 –5.263 –1.301 2.892
7 0.465 0.597 1.597 –1.051 –4.111 2.831 0.322
8 25.127 16.813 17.813 28.956 9.500 15.679 6.038
9 –3.429 –1.095 –0.095 –2.771 –1.000 –1.000 –1.000
10 6.091 3.527 4.527 19.970 –1.627 10.365 13.491
11 –10.848 –3.350 –2.350 0.496 –5.300 3.081 3.094
12 –5.860 –1.989 –0.989 –2.771 –1.000 –1.000 –1.000
13 12.830 7.682 8.682 16.760 –1.672 10.356 9.930
14 –14.150 –3.798 –2.798 –2.771 –1.000 –1.000 –1.000
15 –6.446 –2.184 –1.184 –2.771 –1.000 –1.000 –1.000
16 –14.849 –3.831 –2.831 –2.771 –1.000 –1.000 –1.000

e–rh [W(P2, 2, c)] = 1.3476 – 14.5983 P + 11.1579 P2 + 2.8089 P3
1E�
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Next, the optimal decision at t = n = 3 is made by equation (32). The
two strategy choices are ζ = o and ζ = c. The values of these strategies
differ, depending on whether the starting mode is z = o (top panel) or z

TABLE 5. Computations at t = 0.

Open at start of t = 1, z = o

X(Pt , o, ψ)

Path Φ t = 1 t = 2 t = 3 t = 4

1 12.189 1.538 5.495 2.589 3.922
2 –7.843 –0.420 –2.332 –5.000 –1.000
3 1.129 4.596 –0.387 –1.364 –2.018
4 7.811 2.303 1.541 3.432 1.328
5 –8.654 –1.281 –2.314 –5.000 –1.000
6 10.738 7.183 2.737 –1.301 2.892
7 8.791 2.514 3.889 2.831 0.322
8 42.836 7.942 17.500 15.679 6.038
9 –3.417 1.463 –1.963 –1.056 –2.434
10 30.326 3.907 6.373 10.365 13.491
11 7.060 –0.834 2.700 3.081 3.094
12 –0.918 0.761 0.538 –1.568 –0.885
13 28.708 5.434 6.328 10.356 9.930
14 –1.341 –2.055 –0.413 2.976 –1.907
15 –1.594 0.585 –1.148 –1.211 –0.025
16 –8.601 –2.338 –5.000 –1.000 –1.000

Closed at start of t = 1, z = c

X(Pt , c, ψ)

Path Φ t = 1 t = 2 t = 3 t = 4

1 2.366 –1.000 –2.505 2.589 3.922
2 –3.623 –1.000 –1.000 –1.000 –1.000
3 –6.557 –3.405 –0.387 –1.364 –2.018
4 –3.623 –1.000 –1.000 –1.000 –1.000
5 –3.623 –1.000 –1.000 –1.000 –1.000
6 3.052 –0.817 2.737 –1.301 2.892
7 –1.970 –1.000 –4.111 2.831 0.322
8 35.150 –0.058 17.500 15.679 6.038
9 –3.623 –1.000 –1.000 –1.000 –1.000
10 22.639 –4.093 6.373 10.365 13.491
11 –0.485 –1.000 –5.300 3.081 3.094
12 –3.623 –1.000 –1.000 –1.000 –1.000
13 21.021 –2.567 6.328 10.356 9.930
14 –3.623 –1.000 –1.000 –1.000 –1.000
15 –3.623 –1.000 –1.000 –1.000 –1.000
16 –3.623 –1.000 –1.000 –1.000 –1.000
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= c (bottom panel). Thus, the 2nd column in the top panel describes the
payoff to the strategy of starting in the open state at n = 3 and remaining
in that state. These are the column-4 values plus the payoff for n = 3,
which is X(P3, o, o) in the open-open case, for example. The cash flow
includes any transition costs, as in equation (27).

By comparing the values for the two strategies, the optimal policy
is determined and the new optimal payoffs, X(P, z, ψ), are then
computed for decisions in the time period n = 2, and placed in the 6th

and 7th columns of the open and closed panels of table 3. The streams
of payoffs come from the transitions in the strategy ψ and the initial
state (open or closed), price P and time t.18 Once again, by discounting,
we compute Φ(2, ζ, ω) for ζ 0 {o, c} and then, by OLS, we estimate the

continuation values , ζ 0 {o, c}. These are used to( )[ ]2 2,2,re E W P ζ− �
calculate the values for the Bellman optimality comparison in the first
two columns of table 3. The resulting optimal cash flows are carried to
the analysis at n = 1 in the last three columns of table 4.

At n = 1, the above computations are repeated, giving the optimal
payout streams X(P1, o, ψ), . . . and X(P1, c, ψ), . . . for each path ω.
These values are place in table 5. The present values of these payouts
are the Φ(0, z, ω) in the first column of each panel of the table.

Then, the values of the open and closed facility are obtained by
taking the sample average over all ω of  Φ(0, z, ω) for z 0 {o, c}. The
estimated value of an open facility at t = 0 is W(1, 0, o) = 7.236, and the
value of a closed facility is W(1, 0, c) = 2.890.

A more accurate valuation of the facility can be obtained by
increasing the number of paths and the number of steps.19

ΙΧ.  Concluding Remarks

We have given an overview of several issues that we find are important
to real option analysis. Although real options analysis is intellectually
appealing and rigorous, we continue to be surprised that it has not
achieved the popularity of other techniques in finance. For example,
corporations invest significant resources in managing financial risk, not

18. Note that it can happen that the facility is kept in operation with a negative value,
because we have not explicitly considered the option to abandon.

19. Additional details are given in Gamba (2003).
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just in options and insurance premia, but in the organizational
infrastructure and labour cost needed to manage a derivatives, futures
and swaps portfolio. They also expend many resources to compute risk
measures such as Value at Risk (VaR), even when they are not required
to do this — financial institutions are required to calculate VaR, but
other organizations do it voluntarily.

These expensive corporate activities are designed to model and
measure risk. But, only real options strategy can go the extra step and
use this risk to create shareholder value. This is why we are so
perplexed as to the lack of broad endorsement of real options strategies.
The first part of this paper identifies some of the important
characteristics of real options that are different from the existing
popular financial risk analysis techniques. Some of these are often
overlooked. For example, we have seen people try to build real options
strategies without flexibility. Others don’t realize how leverage allows
real options to create value and also prevents analysis by risk-adjusted
discount rates.

We also discussed organizational impediments to adoption of real
options strategy. With a greater awareness of these problems and
advantages of real options, proponents can more successfully get a
value-enhancing real options strategy adopted in an organization.

The second half of the paper is more analytical, but is designed to
present a basic shell of techniques that are valuable for the real options
analyst. They include models of flexibility: decision trees and influence
diagrams. They also include models of risk: continuous-time (diffusion)
and discrete (lattice) models of risk. Issues associated with setting
parameters for these models have been discussed, as well as reasons
why some models like mean reversion are important in various settings.

The paper closes with discussions of two numerical techniques that
can be used to solve a broad range of real options problems: the lattice
or tree approach and the least-squares Monte Carlo method.

Accepted by:  Prof. L. Trigeorgis, Guest Editor, April 2007
 Prof. P. Theodossiou, Editor-in-Chief, April 2007
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