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I.  Introduction

Robust regression methods usually address violations of assumptions of
ordinary least squares (OLS) to produce efficient estimators. When
researchers substitute OLS for another estimator to improve estimator
efficiency, the robust estimators they use in place of OLS may introduce
bias to the intercept. Secondly, the OLS slope is inefficient when the
error distribution is thick-tailed or skewed, whereas robust methods
usually address thick tails. Specifying a log-likelihood function with a
non-normal symmetric density to address OLS inefficiency introduces
bias to the intercept if the errors are skewed as well as thick-tailed.

This paper shows that robust estimators using the skewed
generalized T (SGT), a recently developed five-parameter distribution
that accommodates both skewness and thicktails, provides an efficient
and unbiased estimator of the intercept and slope when the error
distribution is skewed and / or thick-tailed. The SGT nests the normal
distribution and many commonly used distributions in robust estimation. 

The issue of a biased intercept is important in areas as estimating the
capital asset pricing model (CAPM) since the intercept, known as
Jensen’s alpha ((Jensen (1968)) is used to evaluate the return
performance of stocks and mutual funds, stock valuation, and for
predicting the market returns on an asset.  Generally, the problem of a
biased intercept is important in any analysis where the intercept has an
important interpretation or prediction estimates of the dependent
variable are generated by the regression model.  For example, biased
intercepts will systematically over- or under-state forecasts.

It is a generally accepted finding that stock returns are usually non-
normally distributed, and their empirical distributions often exhibit both
kurtosis and skewness; e.g., Mandelbrot (1963), Fama (1965), Fama,
Fisher, Jensen and Roll (1969), Fielitz and Smith (1972), Francis (1975)
and McDonald and Nelson (1989). A major issue investigated in this
paper is the effect of skewness in stock returns on the estimation of the
CAPM, a two-parameter linear model that involves regressing excess
stock returns on excess stock market returns.

Estimating CAPM regressions with OLS produces unbiased and
efficient parameter estimates when the stock returns and associated
regression errors are normally distributed. Blume (1968) shows that
non-normal stock returns generate non-normal residuals in CAPM
estimation.  When the error distribution is thick-tailed and/or skewed,
OLS produces inefficient estimates. The latter necessitates the use of
robust, quasi-maximum likelihood, or partially adaptive estimation
techniques.
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Some robust estimation techniques commonly used include the least
absolute deviation (LAD) estimator which minimizes the sum of the
absolute value of the regression errors or, more generally, Lk estimators
which minimize the sum of absolute values of the regression errors
raised to the power k for fixed, but unrestricted value of k. Still more
general robust estimators include the Lk estimators where the data
endogenize the selection of the value of the parameter k or M-estimators
which minimize a general function of the errors over the parameter
values. LAD and Lk (with k predetermined or determined by the data)
are both special cases of M-estimation. See Hampel (1974), Huber
(1981), Koenker (1982), Koenker and Basset (1978), and Koenker and
Basset (1982) for a more thorough discussion of these estimation
techniques.

Another type of robust estimator involves the choice of alternatives
to the normal density for regression estimation such as generalized T
(GT), generalized error (GED), student’s T, and Laplace, which is the
LAD. There are many robust estimation methods and we do not attempt
to develop an exhaustive discussion of all of them in this paper. They
can be placed into two categories, one that is based on outlier-resistant
methods in choosing regression parameter estimates, and the other the
choice of probability density function (pdf) and parameters for
specifying the likelihood function. These types may overlap. Boyer,
McDonald, and Newey (2003) differentiate robust or outlier-resistant
estimators into re-weighted least squares or least median squares, and
partially adaptive estimators. Partially adaptive estimation procedures
can be viewed as being quasi-maximum likelihood estimators (QMLE)
because they maximize a log-likelihood function corresponding to an
approximating error distribution over both regression and distributional
parameters. In other words they maximize a likelihood function by
choosing values for the regression parameters and the distribution
parameters of the regression residuals. Hinich and Talwar (1975), Chan
and Lakonishok (1992), Yohai and Zamar (1997), Martin and Simin
(2003) also have developed outlier resistant methods for efficiency
improvement. 

The above robust techniques address efficiency due to kurtosis, but
do not account for skewness. If skewness is present, the estimated
CAPM intercept will be biased downwards in positively skewed data
and upwards in negatively skewed data. The size of the bias is directly
related to the extent of skewness and kurtosis. The CAPM intercept, or
Jensen’s alpha, is frequently used as a measure of stock portfolio
performance. A biased alpha can lead to erroneous decisions on stock
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valuation, portfolio selection, and mutual fund investment evaluation.
Moreover, stocks with biased alphas can lead to biased and inefficient
portfolios; see Frankfurter, Phillips, and Seagle (1974).  Inefficient
betas (CAPM slope) can also lead to large errors in estimating the cost
of common equity capital as shown in McDonald, Michelfelder, and
Theodossiou (2009). 

The above problem is important to address in any regression if the
intercept has a meaningful interpretation or if the regression model is
used in forecasting. A solution to the problem of both parameter
inefficiency and intercept bias in regression is to use “flexible”
probability distribution functions (pdf’s), that is, those that
accommodate both kurtosis and skewness. Such flexible pdf’s include
the SGT of Theodossiou (1998), the skewed generalized error (SGED)
of Theodossiou (2001), the inverse hyperbolic sine (IHS) of Johnson
(1949) and the exponential generalized beta of the second kind (EGB2)
of McDonald and Xu (1995). Hansen, McDonald, and Theodossiou
(2007) include some additional discussion of these distributions and
applications.

This paper provides theoretical, empirical, and simulation
verifications of the intercept bias and shows how to address the bias
problem. It also evaluates many well-known robust estimation methods
using nine error distributions nested within the SGT that have various
restrictions in accommodating thick-tails and skewness. The SGT
nesting provides us with an integrated framework for making
comparisons of the techniques such as LAD, trimmed regression
quantile, Lk, and M estimators and reaching conclusions on the relative
efficiency of the regression parameters. The paper employees the entire
universe of publicly traded stocks in the U.S. which had at least four
years of usable data over the period 1995 to 2004.

The next section of the paper discusses the CAPM estimation, the
properties of the SGT, and the bias in the intercept. Section III reviews
the empirical results. Section IV discusses the simulation results
involving CAPM regressions where normal, thick-tailed, and skewed
error pdf’s are used to simulate regression errors. Section V concludes
the paper.

II.  SGT-Capm Estimation

The estimation of CAPM’s parameters is accomplished by fitting the
following regression equation to each stock’s returns data:
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, (1), , ,i t i i M t i tr rα β ε= + +

for i = 1, 2, ..., N and t = 1, 2, ...,Ti,

where ri,t = Ri,t–Rf,t and rM,t = RM,t–Rf,t are excess returns from the risk
free rate Rf,t for stock i and the market, αi and βi are the alpha and beta
for the stock, gi,t is a regression error term for each individual stock’s
return generating process having zero mean and constant variance, Ti is
the sample size for the stock, and N is the number of stocks. Note in the
above CAPM specification the value for each stock’s alpha implied by
the theory is zero since Rf,t is subtracted from both sides of the equations
and otherwise Rf,t is the theoretical intercept. As such, the above
equation is often used to test the validity of the CAPM model for stocks
and other assets as well as to assess the performance of stocks and
mutual funds. A positive alpha would indicate that the stock or mutual
fund had superior returns relative to risk and vice versa.

Estimates for the alpha and beta of each stock are obtained from the
maximization of the sample log-likelihood function
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and

(4)( ), , ,i t i t i i M tu r m rβ= − +

where ui,t is a deviation of ri,t from its conditional mode mi + βi rM,t, ni is
a scaling constant related to the standard deviation, when it exists, B(@)
is the beta function, sign is the sign function taking the value of –1 for
negative values of ui,t and 1for positive values of ui,t, λi is a skewness
parameter obeying the constraint –1< λi < 1, and ki and ni are positive
kurtosis parameters.

The parameter ki controls mainly the shape of the conditional density
around the mode of ri,t. Specifically, values of ki below two (ki < 2)
result in density functions that are leptokurtic relative to the normal
distribution (i.e., peaked around the mode) and values of ki greater than
two (ki > 2) result in density functions that are platykurtic relative to the
normal distribution. As ki grows larger, the SGT density function
approaches that of the uniform distribution. The parameter ni controls
mainly the tails of the density. As ni gets smaller the tails of the SGT
become fatter and as ni gets infinitely large, the SGT approaches the
SGED and for k = 2 the normal distribution. The standardized skewness
and kurtosis values for the SGT can be obtained using equations (9) and
(10) with feasible combinations as depicted in Hansen, McDonald,
Theodossiou (2007) which covers a substantial portion of the area
skewness (–4, 4), and (1.8, 4).

The non-centered SGT is defined for any value of ni > 0 and can be
used in the estimation of the parameters mi and βi regardless of the
existence of the first and second moments of the distribution. Note that
the moments of the SGT exist up to the value ni; see McDonald and
Newey (1988) and Theodossiou (1998).

When ni > 1, the conditional expected value of ri,t is equal to
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Thus, the regression intercept of equation (1) is equal to

. (7)i i i imα ρ ϕ= +

When ni > 2, the conditional variance of returns exists and is equal to
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Equations (7) and (8) are necessary to compute the intercept and
variance of a regression model when a non-centered density likelihood
specification is used. Equation (7) can be rewritten as

.i i i imα ρ ϕ− =

This equation provides the adjustment factor for the intercept when the
non-centered SGT log-likelihood specification is used. Note that in the
case of: a) negatively skewed SGT, λi < 0 and ρi < 0, b) symmetric SGT,
λi = 0 and ρi= 0 and c) positively skewed SGT, λi > 0 and ρi > 0. The
latter adjustment factor will be negative for negatively skewed returns
and positive for positively skewed returns.

The skewness of ri,t, for ni > 3, is
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The kurtosis of ri,t, for ni > 4, is
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see the Appendix A for the derivations of the moments, skewness and
kurtosis equations.

The SGT nests several well known pdf’s as special cases, such as the
GT, skewed T (ST), student’s T, Cauchy, SGED, generalized error
distribution (GED) and Laplace. Moreover, the SGT (with restrictions)
log-likelihood specification yields the Lk estimator, MAD (or LAD)
estimator, and trimmed regression quantile estimator as special cases. 
See the Appendix B for more details.

III.  Sampling and Estimation

We considered the population of all 11,001 common stocks in the
University of Chicago’s Center for Research in Security Prices (CRSP)
database that were publicly traded between January 1, 1995 and
December 31, 2004 on the NYSE, the AMEX, and the NASDAQ. Any
stock was removed that did not have at least four years of data (1,000
trading-day returns) during the 10 year period. The time series
observations of rates of return for individual stocks range between 1,000
and 2,519 observations. We avoided survival bias by not removing
stocks that were de-listed or stopped trading due to liquidation from
bankruptcy, dropped from trading on the exchange, merged, or
exchanged for other stock. The resulting universe of 6,502 stocks were
used in the analysis.

Stock returns (Ri,t) are daily holding period rates of return for each
stock obtained from the CRSP database. The risk-free rate of return (Rf,t)
is the daily return on the one-month US Treasury Bill that compounds
to the monthly return for a specific month. The stock market return
(Rm,t) from the CRSP database is the value-weighted daily return on all
of the stocks in the CRSP database. The daily excess stock market
return {rm,t or (Rm,t – Rf,t)}, the independent variable in the regressions,
is from the Fama and French files of the CRSP database.

All 6,502 stocks were used to compute regression estimates of
alphas and betas using OLS, LAD, SLAD, GED, SGED, student’s T,
ST, GT, and SGT. We used the OLS estimates to initially analyze the
pdf characteristics of the residuals as OLS is commonly used by
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practitioners and many researchers of the CAPM.
A bivariate relative frequency table for the OLS regressions

residuals skewness is presented on table 1. The bottom row shows that
88% (5,728 stocks) of all regression residuals have standardized
kurtosis greater than 4. Specifically, about 32% (2,078 stocks) have
kurtosis between 4 and 8, 17% (1,128 stocks) between 8 and 12 and
39% (2,522 stocks) greater than 12. These results strongly support the
hypothesis that the distribution of CAPM residuals are leptokurtic
relative to the normal distribution. The last column of the table presents
the results for the standardized skewness. According to the table, 88%
(5,694 stocks) of the CAPM’s skewness values are outside the –0.2 to
0.2 range, which roughly constitutes the confidence interval at the 5%
level of significance (see table 1 notes for standard errors). Of these,
about 9% (600 stocks) are less than –0.2 and 79% (5,094 stocks) are
greater than 0.2, implying that the overwhelming majority of CAPM
residuals are significantly positively skewed.

Interestingly the bivariate results of table 1 show that only about 3%
(190 stocks) are approximately normally distributed as they exhibit
skewness in the range of –0.2 to 0.2 and kurtosis in the range of 0 to 4.
Thus, about 97% (6,312 stocks) of CAPM residuals exhibit skewness
and / or kurtosis. The results depict a positive relation between absolute
skewness and kurtosis. In conclusion, the results of table 1 establish that
robust estimation methods are required to obtain more efficient
estimates of the CAPM’s parameters as the majority of the CAPM
regression residuals have both skewed and thick-tailed distributions.

We developed a frequency table of the Jarque-Bera (JB) statistic for
the regressions residuals. The JB statistic tests the null hypothesis that
the pdf of the regression residuals are normal. It performs a joint test for
skewness and excess kurtosis and is χ2 distributed with two degrees of
freedom. The results reject the null hypothesis of normality for all of the
stocks’ regression residuals. The JB table is available upon request.

Table 2 presents the frequency distribution of the betas estimated
with the SGT. It shows that about 80% of the betas range from 0 to 1.5.
This is a reasonable range for the majority of beta levels. The associated
estimated intercepts, although not shown but discussed below, are
adjusted for the bias due to the structure of the SGT.

The first column of table 3 presents the frequency N(λi) and relative
frequency P(λi) of the skewness parameter λi, for all 6,502 CAPM
regressions, estimated using the SGT likelihood specification. Observe
that about 21% (1,391 stocks) of the λi’s are negative and about 79%
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(5,111 stocks) are positive. The last two columns give the number and
fraction of λ’s in each class interval that are statistically significant at
the 5% and 1% levels, respectively. The t-values for the estimated λi are
based on robust standard errors. Notice that as we move away from
zero, the fraction of statistically significant λ’s in each class interval
increases. The bottom row shows that about 50% (3,242 stocks) of the
CAPM residuals exhibit significant positive or significant negative
skewness. Of these, 21% (680 stocks) of the regression residuals exhibit
negative skewness and 79% (2,562 stocks) exhibit positive skewness.
For the overall sample, the percentage of stocks with significant
negative and significant positive skewness in CAPM residuals are
respectively 10% (= 680/6,502) and 39% (= 2,562/6,502).

We developed frequency tables of the SGT kurtosis parameters, ni

and ki (not presented for brevity and available upon request). The ni

parameter determines the thickness of the pdf’s tails. Lower (higher)
values of ni reflects thicker (thinner) tails for the SGT. About 51%
(3,316 stocks) of the ni’s range between 2 and 10 and are substantially
lower than the normal pdf value of ni = 30. Less than 1% (52 stocks) of
the estimated ni’s are less than one. Therefore the majority of the
residuals have thick tailed pdf’s, thereby driving the need for robust-
efficient estimators.

TABLE 2. Beta Frequency Distribution: SGT Model

Number Fraction of
Range of Stocks Total Sample

–0.25 0.00 972 0.1495
  0.00 0.25 1,927 0.2964
  0.25 0.50 785 0.1207
  0.50 0.75 1,070 0.1646
  0.75 1.00 774 0.1190
  1.00 1.25 397 0.0611
  1.25 1.50 230 0.0354
  1.50 1.75 135 0.0208
  1.75 2.00 98 0.0151
  2.00 2.25 72 0.0111
Above 2.25 42 0.0065

Total 6,502 1

Note:  The beta is the estimated slope for the CAPM model.  These results were
estimated with 6,502 SGT regression estimations of the CAPM.  Sample sizes used in the
estimations range between 1,001 and 2,519 daily stock return observations obtained from
CRSP for the time period 12/1/1995 to 12/31/2004. The average beta is 0.4763.
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The ki parameter determines the degree of leptokurtosis
(platykurtosis). The value of ki for OLS and the normal pdf is 2. Values
of ki less than (greater than) 2 reflects leptokurtic (platykurtic) pdf’s.
We find that ki is less than 1.75 for over 85% (5,527 stocks) of all
residuals. The mean of ki is 1.12 for all 6,502 SGT regressions. This is
further evidence of mainly thick-tailed and peaked residual pdf’s.

Note that to obtain the correct αi value for the regression intercept,
the quantity ρini has to be added to the estimated mode intercept mi, i.e.,
αi= mi +ρini; see equation 7. Note, however, that the latter equation is
only defined for values of ni > 1. The first column of table 4 presents the
frequency N(ρini) and relative frequency P(ρini) of the intercept
adjustment factor ρini, due to skewness, for 6,450 SGT- estimated

TABLE 3. Relative Frequency of the Skewness Parameter λ

N(λ)/ Significant at the
Ranges P(λ) 5% level 1% level

  λ < –0.05 170 126 122
0.0261 0.7412 0.7176

–0.050 < λ < –0.025 377 234 221
0.0580 0.6207 0.5862

–0.025 < λ < 0.000 844 320 285
0.1298 0.3791 0.3377

  0.000 < λ < 0.025 1,263 229 212
0.1942 0.1813 0.1679

  0.025 < λ < 0.050 1,247 186 111
0.1918 0.1492 0.0890

  0.050 < λ < 0.075 986 603 217
0.1516 0.6116 0.2201

  0.075 < λ < 0.100 708 647 502
0.1089 0.9138 0.7090

  0.100 < λ < 0.125 408 400 381
0.0627 0.9804 0.9338

  0.125 < λ < 0.150 261 261 259
0.0401 1 0.9923

  0.150 < λ 238 236 236
0.0366 0.9916 0.9916

Total 6,502 3,242 2,546
Fraction of Total 1 0.4986 0.3916

Note:  The skewness parameter, λ, for the SGT regression residuals distributions, is
estimated from 6,502 CAPM SGT regressions. Sample sizes used in the estimations range
between 1,001 and 2,519 daily stock return observations obtained from CRSP for the time
period 12/1/1995 to 12/31/2004. The t-values used for significance tests are based on robust
standard errors.
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CAPM regressions; i.e., 52 regressions yielded estimated values for ni

< 1. The last two columns give the number and fraction of ρini’s in each
class interval that are statistically significant at the 5% and 1% levels,
respectively. Notice that the results are quite analogous to those of table
3. This is a byproduct of the fact that the adjustment factor is driven
mainly by the skewness parameter λi. Interestingly, the adjustment factor
is in many instances greater than 0.5 or 50 basis points.

The estimated CAPM intercept bias due to skewness b(αi) is
computed as the difference between intercepts estimated using the SGT
and GT (symmetric) likelihood specification, i.e., b(αi) = αSGT,i–αGT,i.

TABLE 4. Relative Significance of Non-Centered SGT Adjustment Factor ρini

N(ρini)/ Significant at the
ρini P(ρini) 5% level 1% level

  ρini < –0.5 118 87 86
0.0181 0.7373 0.7288

–0.50 < ρini < –0.25 275 176 167
0.0423 0.6400 0.6073

–0.25 < ρini < 0.00 973 404 365
0.1496 0.4152 0.3751

  0.00 < ρini < 0.25 2,987 813 497
0.4631 0.2722 0.1664

  0.25 < ρini < 0.50 910 630 425
0.1400 0.6923 0.4670

  0.50 < ρini < 0.75 482 430 350
0.0741 0.8921 0.7261

  0.75 < ρini < 1.00 301 290 256
0.0463 0.9635 0.8505

  1.00 < ρini < 1.25 187 179 172
0.0288 0.9572 0.9198

  1.25 < ρini < 1.50 103 103 102
0.0158 1.0000 0.9903

  1.50 < ρini 114 114 114
0.0175 1 1

Total 6,450 3,226 2,534
Fraction of Total 1 0.5002 0.3929

Note:  The adjustment factor is estimated for each of the SGT residual distributions from
6,450 SGT CAPM regressions. The above table is based on a sample of 6,450 stocks, because
52 stocks had estimated values for ni < 1, thus ρini was not defined. Sample sizes used in the
estimations range between 1,001 and 2,519 daily stock return observations obtained from
CRSP for the time period 12/1/1995 to 12/31/2004. For the computation of the significance
frequency rates of the intercept adjustment factor we used the robust t-values of λ’s.
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Similarly, table 5 presents the relative frequency and significance results
for the intercept bias b(αi). The results show a significant difference in
the intercepts of the skewed and symmetric likelihood specifications. In
67% (4,334 stocks) of the cases, the bias is statistically significant at the
5% level and 51% (3,324 stocks) are significant at the 1% level. Recall
that in table 3, 50% of the regressions’ residuals distributions had
significant skewness. The fraction of stocks that have significant bias
with negative bias is 23% (999 stocks) and significant positive bias is
77% (3,335 stocks).

These results provide strong empirical support that when skewness
is present in the data, the use of symmetric log-likelihood specifications
or “symmetric type” robust estimation techniques will result in biased
regression intercepts. This issue along with the issue of efficiency of

TABLE 5. Relative Frequency of Intercept Bias Due to Skewness: SGT vs. GT

N(b(αi))/ Significant at the
b(αi) = αSGT,i –αGT,i P(b(αi)) 5% level 1% level

  b(αi) < –0.75 37 29 27
0.0057 0.7838 0.7297

–0.75 < b(αi) < –0.50 81 69 53
0.0125 0.8519 0.6543

–0.50 < b(αi) < –0.25 272 211 174
0.0418 0.7757 0.6397

–0.25 < b(αi) < 0.00 1,035 690 591
0.1592 0.6667 0.5710

  0.00 < b(αi) < 0.25 4,243 2,514 1,720
0.6526 0.5925 0.4054

  0.25 < b(αi) < 0.50 659 646 585
0.1014 0.9803 0.8877

  0.50 < b(αi) < 0.75 141 141 140
0.0217 1 0.9929

  0.75 < b(αi) 34 34 34
0.0052 1 1

Total 6,502 4,334 3,324
Fraction of Total 1 0.6666 0.5112

Note:  The intercept bias is calculated as the difference between the SGT intercept and
the intercept from its symmetric, restricted (skewness parameter λ = 0) counterpart, the GT. 
Sample sizes used in the estimations range between 1,001 and 2,519 daily stock return
observations obtained from CRSP for the time period 12/1/1995 to 12/31/2004. The test
statistics for the bias significance are based on the log-likelihood ratio test statistic of the
SGT (unrestricted) and GT (restricted) models. The ratio follows chi-square distribution with
one degree of freedom.
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various estimators is further investigated in the next section using
simulations.

IV.  Simulations and Estimation Performance

We use Monte Carlo simulations to assess the effects of tail thickness
and/or skewness of the error distribution on the relative efficiency of the
various regression estimators of CAPM’s intercept. In addition to OLS,
LAD or Laplace, GED, student’s T and GT -based estimators, used in
prior studies, we consider the skewed specifications of Laplace (SLAD),
GED, student T and GT estimators. These results extend those reported
in Manski (1984) and McDonald and White (1993).

Specifically for the simulations, we use the CAPM model

,,t M t tr rα β ε= + +

where rM,t is the excess market return for the entire sampling period (i.e.,
2,519 observations ), and gt and rt are a randomly generated error terms
and stock returns. A value of zero for the alpha and one for the beta
(i.e., α = 0 and β = 1), are used in all random samples.

Following McDonald and White (1993), the regression errors are
generated using the (1) normal, (2) mixed-normal (thick-tailed variance-
contaminated), and (3) skewed log-normal distributions. Specifically,
the normal error term is generated by g1 = σ z, where z ~ N(0,1). The
thick-tailed variance contaminated error distribution is generated by g2=
σ [w z1 +(1 –w) z2], where z1 ~ N(0,1/9), z2 ~ N(0,9), and w= 1 with
probability 0.9 and w = 0 with a probability of 0.1. This distribution is
symmetric and has a standardized kurtosis of 24.33. The log-normal
distribution is generated by g3 = σ (e0.5 z–e0.125)/(e0.5 –e0.25)0.5, where z ~
N(0,1). This distribution has standardized skewness 1.75 and
standardized kurtosis of 8.898. The standard deviation σ is computed
using the equation σ = [(1/R2)–1]0.5 |β| σM, with β =1, σM = 1.1195
(standard deviation of rM,t in the sample) so that the corresponding R2 =
0.0879 is equal to the average CAPM R2 for all stocks in the sample.  

One thousand and fifty replications of samples are generated with
the same three error distributions to estimate the alpha and beta
parameters. Table 6 presents the means of the regression alphas for the
normal, normal mixture, and log-normal samples and associated t-
statistics in parentheses. Note that for the case of the normal and normal
mixture random data the hypothesis of unbiased estimates of the
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regression intercept cannot be rejected at traditional levels of statistical
significance for any of the estimators. In the case of log-normal
(skewed) random data all of the symmetric models except OLS, i.e., the
LAD, GED, student’s T and GT provide biased estimates of the
regression intercept. OLS estimators will be unbiased whenever the
error terms have a zero mean and are uncorrelated with the regressors. 
They will be inefficient for non-normal error distributions such as those
characterized by skewness or thick tails.  The skewed models provide
unbiased estimates of the regression intercepts. In the case of the slope,
however, all models, symmetric and non-symmetric, provide unbiased
estimates of the regression slopes.

Table 7 provides root mean squared errors (RMSE) of the nine
estimation procedures in each of the three simulation samples for the
intercept and slope estimators. The RMSE, computed as the square root
of the sum of the sample variance of each estimator and the square of its
sample bias, measures how close the estimator is to the true parameter.

Panel A of table 7, presents the results for the intercept estimator. In
the case of the normal random sample, all models except LAD exhibit
similar RMSE performance, thus there appears to be little efficiency
loss for the intercept estimators relative to the OLS estimator. For the
mixed normal random sample, the student’s T and GT estimators are the
best. The latter estimators are slightly better than the LAD and GED
estimators. The remaining estimators are clearly inferior. For the log-
normal random sample, OLS and all skewed estimators, including the
ST and SGT, exhibit similar performance.

Panel B of table 7, presents the results for the slope estimator. In the
case of the normal random sample, all slope estimators, except for those
of LAD and SLAD, exhibit similar RMSE performance. For the mixed-
normal sample, the student’s T, ST, GT and SGT slope estimators are
the best. Their RMSE values are about 86% of those of GED and
SGED, 71% of those of LAD and SLAD and 40% of that of OLS.
Finally, in the case of the log-normal sample, the ST and SGT appear to
be the best slope estimators, followed closely by the SGED estimator.
The RMSE values of ST and GT are about 80% of those of SLAD and
GT, 75% of that of student’s T and about 63% of those of OLS, LAD
and GED.

In sum, the simulation results for the intercept and slope estimators
show that a) all models, except the LAD and SLAD, exhibit similar
performances in the normal random sample, b) the student’s T and GT
are best estimators in the mixed-normal sample and c) the ST and SGT
are the best estimators in the log-normal sample. Overall, the results
favor the T and GT estimators in leptokurtic symmetric data and ST and
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SGT estimators in skewed data. In normal samples, the OLS estimators
are preferred because of their simplicity.

V. Summary and Concluding Remarks

This paper introduces a general class of quasi-maximum likelihood
regression estimators based on the SGT distribution. This class of
estimators includes the OLS, the LAD, the Lk, the trimmed regression
quantile estimators, M-estimators, and the quasi-maximum likelihood
estimators of symmetric and skewed student’s T, Laplace, GED and GT
probability distributions. As such, the SGT distribution provides a
unified framework to investigate the impact of skewness on the
estimated regression parameters of the various estimators and compare
their relative efficiency in diverse types of data.

The importance and relevance of the various robust estimation
techniques and impact of skewness on the estimated regression
parameters is demonstrated using the CAPM, which involves regressing
individual stock excess returns on market excess returns, and the entire
universe of all publicly traded U.S. stocks with at least four years of
data. A preliminary analysis of CAPM’s regression residuals depict that
about 97% of the stocks exhibit significant skewness and/or excess
kurtosis, 79% of them exhibit significant positive skewness and 9% of
them exhibit significant negative skewness. These results provide
overwhelming support for the use of robust type estimation techniques
for CAPM’s estimation, and, more generally, any regression analysis of
stock returns where the intercept is important. The empirical results
include the impact of the occasional extreme error outlier as well as
skewed errors.  

Empirical and theoretical analysis shows that when skewness is
present in the data, quasi-maximum likelihood estimation techniques
based on symmetric probability distributions produce biased estimates
for the regression intercepts. The latter bias is negative with negatively
skewed data and positive with positively skewed data. The simulation
results are generally consistent with the results of Newey and
Steigerwald(1997) which show that a QMLE with a mis-specified
symmetric error distribution provides an inconsistent estimator of the
intercept when the true error distribution is asymmetric, but the QMLE
can provide a consistent estimator of the intercept when the assumed
error distribution is asymmetric and nests the true error distribution. 
The assumed error distribution, the SGT, does not include the log-
normal as a special or limiting case, but allows the flexibility to capture
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the corresponding skewness and kurtosis. The latter has significant
implications for finance, since the CAPM intercept, or Jensen’s alpha,
is frequently used in portfolio selection and stock and mutual fund
valuation.

The simulation results using the normal, mixed-normal (thick-tails)
and log-normal (positively skewed) random samples show that: a) all
models, except the LAD and skewed LAD, exhibit similar performances
in the normal random sample, b) the student’s T and GT are the best
estimators in the mixed-normal sample and c) the ST and SGT are the
best estimators in the log-normal sample. Overall, the results favor the
student’s T and GT estimators in leptokurtic symmetric data and the ST
and SGT estimators in skewed data. In normal samples, the OLS
estimators are preferred because of their simplicity and to avoid
efficiency loss from over-parameterization from having to estimate un-
necessary distribution parameters.  

The above findings are relevant and important to researchers in any
area interested in unbiased and efficient regression estimators.
Examples of skewed and/or leptokurtic data from other fields include a)
building electricity usage data, e.g., Parti and Parti (1980), Hartman
(1983), Bartels and Fiebig (1990); b) economic housing price data, e.g.,
Hansen, McDonald, and Turley (2006); c) meteorological solar
radiation predictions and wind shear analysis data, e.g., Younes and
Muneer (2006), Kanji (1985), Jones and McLachan (1990); and d)
aeronautical flight navigation risk analysis, e.g., Hsu (1979).

Accepted by:  Prof. R. Taffler, Guest Editor, November 2009
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Gradshteyn and Ryzhik (1994, p. 341) show that
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where . (A.8)
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The second non-centered moment of u, provided that n > 2, is

( ) ( ) ( ) ( )2 3 32
2 0.5 1 1 1E u M λ λ⎡ ⎤= = − − + +⎣ ⎦

(A.9)
2

1
21 1 2 3

, ,
kn n n

B B
k k k k k

ϕ
− + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.(A.10)( )
2

1
2 2 21 1 2 3

1 3 , ,
kn n n

B B
k k k k k

λ ϕ γϕ
− + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

In this case the variance of u is
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because S(λ) > 0 (the latter can be easily proven using the Stirling’s
approximation of the gamma function). 
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The fourth centered moment of u is
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Appendix B: Popular Distributions Nested by the SGT

The skewed generalized T (SGT) distribution, developed by
Theodossiou (1998), 
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“nests” several well known distributions. 
For λ = 0 it gives the generalized T (GT) of McDonald and Newey

(1988)
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McDonald (1989), McDonald and Newey (1988) and McDonald and
Nelson (1989) used the GT to develop partially adaptive estimation of
regression models. Butler et al. (1990) discussed the robust estimation
of CAPM using the GT.

For k = 2 it gives the Hansen’s (1994) skewed T (ST)
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used in autoregressive conditional density estimation.
For k = 2 and λ = 0 it gives the student’s T distribution,

, (B.4)
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often used in log-likelihood specifications of data characterized by
excess kurtosis, e.g., Bollerslev (1987). 

For n = 1 and λ = 0 it gives the Cauchy distribution
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For n = 4 it gives the skewed generalized error distribution (SGED) of
Theodossiou (2001)
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The GED, introduced by Subbotin (1923), was used by Box and Tiao
(1962) to model prior densities in Bayesian estimation, by Zeckhauser
and Thompson (1970), Nelson (1991) and many others to model the
distribution of financial return data.

For k = 2 and and λ = 0 the SGED gives the normal2ϕ σ=
distribution.

(B.8)
2

22

1
exp

22

u
f

σπσ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

For k = 1, it gives the skewed Laplace distribution
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and for k = 1 and λ = 0 the Laplace distribution
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The Laplace distribution has found some very interesting applications.
For example, Hsu (1979) used the Laplace to model the distribution of
position errors in navigation, Kanji (1985) and Jones and McLachan
(1990) to model the distribution of wind shear data and Bagchi, Hayya
and Ord (1983) to model demand during lead and slow times. 

Interestingly, maximum likelihood estimation using the GED,
Laplace and skewed Laplace specifications yield some very well known
estimators often used in regression estimation. Specifically, the GED
log-likelihood specification, for a fix value of k, yields the Lk estimator
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Note that for k = 2, equation B.11 gives the OLS estimator.
The Laplace log-likelihood specification yields the Lad or MAD

estimator
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the skewed Laplace (SL) log-likelihood specification yields the (SLAD)
the trimmed regression quantile (TRQ) estimator of Koenker and
Bassett (1978); see also Chan and Lakonishok (1992),
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where for ut < 0 and for ut > 0,( ) ( )1t tu uρ λ= − ( ) ( )1t tu uρ λ= +
where –1 < λ < 1; note in the trimmed regression quantile literature 1/(1
–λ) = θ and  1/(1 +λ) = 1 – θ, with 0 < θ < 1.
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