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|. Introduction

Robust regression methods usually addressviol ations of assumptions of
ordinary least squares (OLS) to produce efficient estimators. When
researchers substitute OL S for another estimator to improve estimator
efficiency, therobust estimatorsthey usein place of OLSmay introduce
bias to the intercept. Secondly, the OLS slope is inefficient when the
error distribution is thick-tailed or skewed, whereas robust methods
usually address thick tails. Specifying alog-likelihood function with a
non-normal symmetric density to address OL Sinefficiency introduces
bias to the intercept if the errors are skewed as well as thick-tailed.

This paper shows that robust estimators using the skewed
generalized T (SGT), arecently devel oped five-parameter distribution
that accommodates both skewness and thicktails, provides an efficient
and unbiased estimator of the intercept and slope when the error
distribution is skewed and / or thick-tailed. The SGT nests the normal
distribution and many commonly used distributionsin robust estimation.

Theissueof abiased intercept isimportant in areas as estimating the
capital asset pricing model (CAPM) since the intercept, known as
Jensen’s apha ((Jensen (1968)) is used to evaluate the return
performance of stocks and mutual funds, stock valuation, and for
predicting the market returns on an asset. Generally, the problem of a
biased intercept isimportant in any analysis where the intercept has an
important interpretation or prediction estimates of the dependent
variable are generated by the regression model. For example, biased
intercepts will systematically over- or under-state forecasts.

Itisagenerally accepted finding that stock returns are usually non-
normally distributed, and their empirical distributionsoften exhibit both
kurtosis and skewness; e.g., Mandelbrot (1963), Fama (1965), Fama,
Fisher, Jensen and Roll (1969), Fielitzand Smith (1972), Francis(1975)
and McDonald and Nelson (1989). A mgjor issue investigated in this
paper isthe effect of skewnessin stock returns on the estimation of the
CAPM, atwo-parameter linear model that involves regressing excess
stock returns on excess stock market returns.

Estimating CAPM regressions with OLS produces unbiased and
efficient parameter estimates when the stock returns and associated
regression errors are normally distributed. Blume (1968) shows that
non-normal stock returns generate non-normal residuals in CAPM
estimation. When the error distribution is thick-tailed and/or skewed,
OLS produces inefficient estimates. The latter necessitates the use of
robust, quasi-maximum likelihood, or partially adaptive estimation
techniques.
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Somerobust estimation techniques commonly used includetheleast
absolute deviation (LAD) estimator which minimizes the sum of the
absolute value of theregression errors or, more generally, L, estimators
which minimize the sum of absolute values of the regression errors
raised to the power k for fixed, but unrestricted value of k. Still more
general robust estimators include the L, estimators where the data
endogenizethe selection of theval ue of the parameter k or M-estimators
which minimize a genera function of the errors over the parameter
values. LAD and L, (with k predetermined or determined by the data)
are both specia cases of M-estimation. See Hampel (1974), Huber
(1981), Koenker (1982), K oenker and Basset (1978), and Koenker and
Basset (1982) for a more thorough discussion of these estimation
techniques.

Another type of robust estimator involvesthe choice of alternatives
to the normal density for regression estimation such as generalized T
(GT), generalized error (GED), student’s T, and Laplace, which isthe
LAD. Thereare many robust estimation methods and we do not attempt
to develop an exhaustive discussion of all of them in this paper. They
can be placed into two categories, one that is based on outlier-resistant
methods in choosing regression parameter estimates, and the other the
choice of probability density function (pdf) and parameters for
specifying the likelihood function. These types may overlap. Boyer,
McDonald, and Newey (2003) differentiate robust or outlier-resistant
estimators into re-weighted least squares or least median squares, and
partially adaptive estimators. Partially adaptive estimation procedures
can be viewed as being quasi-maximum likelihood estimators (QMLE)
because they maximize alog-likelihood function corresponding to an
approximating error distribution over both regression and distributional
parameters. In other words they maximize a likelihood function by
choosing values for the regression parameters and the distribution
parametersof theregressionresiduals. Hinich and Talwar (1975), Chan
and Lakonishok (1992), Yohai and Zamar (1997), Martin and Simin
(2003) also have developed outlier resistant methods for efficiency
improvement.

The above robust techniques address efficiency dueto kurtosis, but
do not account for skewness. If skewness is present, the estimated
CAPM intercept will be biased downwards in positively skewed data
and upwardsin negatively skewed data. The size of the biasisdirectly
related to the extent of skewness and kurtosis. The CAPM intercept, or
Jensen’s alpha, is frequently used as a measure of stock portfolio
performance. A biased alpha can lead to erroneous decisions on stock
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valuation, portfolio selection, and mutual fund investment evaluation.
Moreover, stocks with biased alphas can lead to biased and inefficient
portfolios; see Frankfurter, Phillips, and Seagle (1974). Inefficient
betas (CAPM slope) can also lead to large errorsin estimating the cost
of common equity capital as shown in McDonald, Michelfelder, and
Theodossiou (2009).

The above problem isimportant to addressin any regression if the
intercept has a meaningful interpretation or if the regression model is
used in forecasting. A solution to the problem of both parameter
inefficiency and intercept bias in regression is to use “flexible’
probability distribution functions (pdf’s), that is, those that
accommodate both kurtosis and skewness. Such flexible pdf’ sinclude
the SGT of Theodossiou (1998), the skewed generalized error (SGED)
of Theodossiou (2001), the inverse hyperbolic sine (IHS) of Johnson
(1949) and the exponential generalized beta of the second kind (EGB2)
of McDonald and Xu (1995). Hansen, McDonald, and Theodossiou
(2007) include some additional discussion of these distributions and
applications.

This paper provides theoretical, empirical, and simulation
verifications of the intercept bias and shows how to address the bias
problem. It al so eval uates many well-known robust estimation methods
using nine error distributions nested within the SGT that have various
restrictions in accommodating thick-tails and skewness. The SGT
nesting provides us with an integrated framework for making
comparisons of the techniques such as LAD, trimmed regression
guantile, L,, and M estimators and reaching conclusions on the rel ative
efficiency of theregression parameters. The paper employeestheentire
universe of publicly traded stocks in the U.S. which had at least four
years of usable data over the period 1995 to 2004.

The next section of the paper discusses the CAPM estimation, the
properties of the SGT, and the biasin the intercept. Section 111 reviews
the empirical results. Section IV discusses the simulation results
involving CAPM regressions where normal, thick-tailed, and skewed
error pdf’ s are used to simulate regression errors. Section V concludes
the paper.

[I. SGT-Capm Estimation

The estimation of CAPM’s parameters is accomplished by fitting the
following regression equation to each stock’ s returns data:
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ri,tzai+ﬂirM,t+5i,tv D
fori=1,2,..,Nandt=1,2, ..., T,

wherer;, = R R, and ry, = R, ~R;, are excess returns from the risk
freerate R;, for stock i and the market, a; and g, are the alpha and beta
for the stock, g, is aregression error term for each individual stock’s
return generating process having zero mean and constant variance, T; is
the sample size for the stock, and N isthe number of stocks. Notein the
above CAPM specification the value for each stock’ salphaimplied by
thetheory iszero since R, issubtracted from both sides of the equations
and otherwise R, is the theoretical intercept. As such, the above
equation isoften used to test the validity of the CAPM model for stocks
and other assets as well as to assess the performance of stocks and
mutual funds. A positive alphawould indicate that the stock or mutual
fund had superior returns relative to risk and vice versa.

Estimatesfor the alphaand beta of each stock are obtained from the
maximization of the sample log-likelihood function

maxl ZInf( ‘th, ) )]

where f is the hypothesized probability density function for r;, and 6, =
[os, Bi...] is a parameter vector for the alpha, beta and other
distributional parameters. Asin other studies, we use the non-centered
SGT log-likelihood specification rather than the centered specification
because it does not require the existence of the first and second
moments and it is easier to estimate. See Theodossiou (1998) for
additional estimation details for the SGT.
The non-centered SGT specification for stock’si returnsis

{32 oz o

(n+l

©)

u.,| )
1+ it
[ ((n+2)/K)(L+ sign(y )4 )" o J



298 Multinational Finance Journal

and
Ui,t=ﬁ,t—(m+ﬂirm,t) 4)

whereu, isadeviation of r; fromits conditional modem + g ry,,, @ is
ascaling constant related to the standard deviation, when it exists, B(-)
isthe beta function, sign is the sign function taking the value of —1 for
negative values of u;, and 1for positive values of u;,, 4; is a skewness
parameter obeying the constraint —1< 4, < 1, and k and n; are positive
kurtosis parameters.

Theparameter k controlsmainly the shape of the conditional density
around the mode of r;,. Specifically, values of k; below two (k < 2)
result in density functions that are leptokurtic relative to the normal
distribution (i.e., peaked around the mode) and values of k; greater than
two (k; > 2) result in density functionsthat are platykurtic relative to the
normal distribution. As k grows larger, the SGT density function
approaches that of the uniform distribution. The parameter n; controls
mainly the tails of the density. As n, gets smaller the tails of the SGT
become fatter and as n; gets infinitely large, the SGT approaches the
SGED and for k=2 the normal distribution. The standardized skewness
and kurtosisvaluesfor the SGT can be obtained using equations (9) and
(10) with feasible combinations as depicted in Hansen, McDonald,
Theodossiou (2007) which covers a substantial portion of the area
skewness (—», «), and (1.8, «).

The non-centered SGT is defined for any value of n, > 0 and can be
used in the estimation of the parameters m and S, regardless of the
existence of the first and second moments of the distribution. Note that
the moments of the SGT exist up to the value n;; see McDonad and
Newey (1988) and Theodossiou (1998).

When n, > 1, the conditional expected value of r;, isequal to

E(ri,t |rM,t):ai + BN+ E(gi,t):ai + Bl
®)
=m +ﬂirM,t+E(ui,t)=m + B+ 0P

S o
P “{M k) Tk ©
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Thus, the regression intercept of equation (1) isequal to
o =M+ . (7)

When n, > 2, the conditional variance of returns exists and is equal to

O-izzvar(ri,t |r|v|,t)=(7i_pi2)¢i21 (8)

el )3 02

Equations (7) and (8) are necessary to compute the intercept and
variance of aregression model when anon-centered density likelihood
specification is used. Equation (7) can be rewritten as

where

o —M =P, .

This equation provides the adjustment factor for theintercept when the
non-centered SGT log-likelihood specification is used. Note that in the
case of: a) negatively skewed SGT, 4, <0and p; <0, b) symmetric SGT,
A, =0 and p;= 0 and c) positively skewed SGT, 4, >0and p, > 0. The
latter adjustment factor will be negative for negatively skewed returns
and positive for positively skewed returns.

The skewnessof r;,, for n, > 3, is

i =3y p+2p°
_m; A 7p2 3/2'0 ©
o (Vi_pi )

where A =4 (1+47)8 [% %j (nTlJ B(TB EJ

Thekurtosisof r;,, for n,> 4, is

m,. —4A, p +6y.p°=3p*
KU-: 40 :A4,I %,|p| }/|p| ,0|

| 0i4 (Vi _pi2)2

(10)
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where A, =(1+10/1,2+5/1,4)B[ﬂ,ij_ (”ﬂ +1Jki B(n‘ _4,§J :
’ kK K k 'k

see the Appendix A for the derivations of the moments, skewness and
kurtosis equations.

The SGT nestsseveral well known pdf’ sasspecial cases, such asthe
GT, skewed T (ST), student’s T, Cauchy, SGED, generalized error
distribution (GED) and L aplace. Moreover, the SGT (with restrictions)
log-likelihood specification yields the L, estimator, MAD (or LAD)
estimator, and trimmed regression quantile estimator as special cases.
See the Appendix B for more details.

[11. Sampling and Estimation

We considered the population of al 11,001 common stocks in the
University of Chicago’s Center for Research in Security Prices (CRSP)
database that were publicly traded between January 1, 1995 and
December 31, 2004 onthe NY SE, the AMEX, and the NASDAQ. Any
stock was removed that did not have at least four years of data (1,000
trading-day returns) during the 10 year period. The time series
observationsof ratesof returnfor individual stocksrangebetween 1,000
and 2,519 observations. We avoided surviva bias by not removing
stocks that were de-listed or stopped trading due to liquidation from
bankruptcy, dropped from trading on the exchange, merged, or
exchanged for other stock. The resulting universe of 6,502 stockswere
used in the analysis.

Stock returns (R.,) are daily holding period rates of return for each
stock obtained fromthe CRSP database. Therisk-freerateof return (R;,)
isthe daily return on the one-month US Treasury Bill that compounds
to the monthly return for a specific month. The stock market return
(Ry,) from the CRSP database is the value-weighted daily return on all
of the stocks in the CRSP database. The daily excess stock market
return{r, or (R,.— R}, theindependent variable in the regressions,
is from the Fama and French files of the CRSP database.

All 6,502 stocks were used to compute regression estimates of
aphas and betas using OLS, LAD, SLAD, GED, SGED, student’s T,
ST, GT, and SGT. We used the OLS estimates to initially analyze the
pdf characteristics of the residuals as OL S is commonly used by
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practitioners and many researchers of the CAPM.

A bivariate relative frequency table for the OLS regressions
residuals skewnessis presented on table 1. The bottom row shows that
88% (5,728 stocks) of all regression residuals have standardized
kurtosis greater than 4. Specifically, about 32% (2,078 stocks) have
kurtosis between 4 and 8, 17% (1,128 stocks) between 8 and 12 and
39% (2,522 stocks) greater than 12. These results strongly support the
hypothesis that the distribution of CAPM residuals are leptokurtic
relativeto the normal distribution. Thelast column of the table presents
the results for the standardized skewness. According to the table, 88%
(5,694 stocks) of the CAPM’ s skewness values are outside the —0.2 to
0.2 range, which roughly constitutes the confidence interval at the 5%
level of significance (see table 1 notes for standard errors). Of these,
about 9% (600 stocks) are less than —0.2 and 79% (5,094 stocks) are
greater than 0.2, implying that the overwhelming majority of CAPM
residuals are significantly positively skewed.

Interestingly the bivariate results of table 1 show that only about 3%
(190 stocks) are approximately normally distributed as they exhibit
skewnessin the range of —0.2 to0 0.2 and kurtosisin the range of 0 to 4.
Thus, about 97% (6,312 stocks) of CAPM residuals exhibit skewness
and/ or kurtosis. Theresults depict apositive rel ation between absol ute
skewness and kurtosis. In conclusion, theresults of table 1 establish that
robust estimation methods are required to obtain more efficient
estimates of the CAPM’s parameters as the mgjority of the CAPM
regression residuals have both skewed and thick-tailed distributions.

We devel oped afrequency table of the Jarque-Bera (JB) statistic for
the regressions residuals. The JB statistic tests the null hypothesis that
the pdf of theregression residualsare normal. It performsajoint test for
skewness and excess kurtosis and is »? distributed with two degrees of
freedom. Theresultsreject thenull hypothesisof normality for all of the
stocks' regression residuals. The JB table is available upon request.

Table2 presentsthe frequency distribution of the betasestimated
withthe SGT. It showsthat about 80% of the betasrangefrom0to 1.5.
Thisisareasonablerangefor the majority of betalevels. Theassociated
estimated intercepts, although not shown but discussed below, are
adjusted for the bias due to the structure of the SGT.

Thefirst column of table 3 presentsthe frequency N(4,) and relative
frequency P(4;) of the skewness parameter 4;, for all 6,502 CAPM
regressions, estimated using the SGT likelihood specification. Observe
that about 21% (1,391 stocks) of the ;' s are negative and about 79%
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TABLE 2. Beta Frequency Distribution: SGT Model

Number Fraction of
Range of Stocks Total Sample
-0.25 0.00 972 0.1495
0.00 0.25 1,927 0.2964
0.25 0.50 785 0.1207
0.50 0.75 1,070 0.1646
0.75 1.00 774 0.1190
1.00 1.25 397 0.0611
1.25 1.50 230 0.0354
1.50 1.75 135 0.0208
1.75 2.00 98 0.0151
2.00 2.25 72 0.0111
Above 2.25 42 0.0065
Tota 6,502 1

Note: The beta is the estimated slope for the CAPM model. These results were
estimated with 6,502 SGT regression estimations of the CAPM. Sample sizes used in the
estimations range between 1,001 and 2,519 daily stock return observations obtained from
CRSP for the time period 12/1/1995 to 12/31/2004. The average betais 0.4763.

(5,111 stocks) are positive. The last two columns give the number and
fraction of A'sin each classinterval that are statistically significant at
the 5% and 1% levels, respectively. Thet-valuesfor the estimated 4, are
based on robust standard errors. Notice that as we move away from
zero, the fraction of statistically significant A’s in each class interval
increases. The bottom row shows that about 50% (3,242 stocks) of the
CAPM residuals exhibit significant positive or significant negative
skewness. Of these, 21% (680 stocks) of theregression residual sexhibit
negative skewness and 79% (2,562 stocks) exhibit positive skewness.
For the overall sample, the percentage of stocks with significant
negative and significant positive skewness in CAPM residuals are
respectively 10% (= 680/6,502) and 39% (= 2,562/6,502).

We developed frequency tables of the SGT kurtosis parameters, n,
and k; (not presented for brevity and available upon request). The n;
parameter determines the thickness of the pdf’s tails. Lower (higher)
values of n; reflects thicker (thinner) tails for the SGT. About 51%
(3,316 stocks) of the n;’ s range between 2 and 10 and are substantially
lower than the normal pdf value of n; = 30. Lessthan 1% (52 stocks) of
the estimated n;’s are less than one. Therefore the majority of the
residuals have thick tailed pdf’s, thereby driving the need for robust-
efficient estimators.
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TABLE 3. Réative Frequency of the Skewness Parameter 4

N(A)/ Significant at the
Ranges P(%) 5% level 1% level
A<-0.05 170 126 122
0.0261 0.7412 0.7176
—0.050< 1 <-0.025 377 234 221
0.0580 0.6207 0.5862
—0.025 < 1 <0.000 844 320 285
0.1298 0.3791 0.3377
0.000<1<0.025 1,263 229 212
0.1942 0.1813 0.1679
0.025 <1 <0.050 1,247 186 111
0.1918 0.1492 0.0890
0.050 <1 <0.075 986 603 217
0.1516 0.6116 0.2201
0.075<1<0.100 708 647 502
0.1089 0.9138 0.7090
0.100<1<0.125 408 400 381
0.0627 0.9804 0.9338
0.125<1<0.150 261 261 259
0.0401 1 0.9923
0.150<2 238 236 236
0.0366 0.9916 0.9916
Total 6,502 3,242 2,546
Fraction of Total 1 0.4986 0.3916

Note: The skewness parameter, A, for the SGT regression residuals distributions, is
estimated from 6,502 CAPM SGT regressions. Sample sizes used in the estimations range
between 1,001 and 2,519 daily stock return observations obtained from CRSP for the time
period 12/1/1995 to 12/31/2004. Thet-values used for significancetests are based on robust
standard errors.

The k parameter determines the degree of leptokurtosis
(platykurtosis). Thevalue of k; for OL Sand the normal pdf is2. Values
of k less than (greater than) 2 reflects leptokurtic (platykurtic) pdf’s.
We find that k; is less than 1.75 for over 85% (5,527 stocks) of all
residuals. The mean of k; is 1.12 for all 6,502 SGT regressions. Thisis
further evidence of mainly thick-tailed and peaked residual pdf’s.

Note that to obtain the correct «; value for the regression intercept,
the quantity p, ¢ hasto be added to the estimated mode intercept m, i.e.,
o= m +p;¢,; see equation 7. Note, however, that the latter equation is
only defined for valuesof n, > 1. Thefirst column of table 4 presentsthe
frequency N(p;) and relative frequency P(p,¢) of the intercept
adjustment factor p; ¢, due to skewness, for 6,450 SGT- estimated



Robust Regression Estimation Methods and | ntercept Bias 305

TABLE 4. Relative Significance of Non-Centered SGT Adjustment Factor p;@

N(p; @)/ Significant at the
i P(pip) 5% level 1% level

pigp <-0.5 118 87 86
0.0181 0.7373 0.7288

-050<p;p <-0.25 275 176 167
0.0423 0.6400 0.6073

-0.25< p; <0.00 973 404 365
0.1496 0.4152 0.3751

0.00<p; ¢ <0.25 2,987 813 497
0.4631 0.2722 0.1664

0.25<p;¢ <0.50 910 630 425
0.1400 0.6923 0.4670

0.50<p;p <0.75 482 430 350
0.0741 0.8921 0.7261

0.75<p;p <1.00 301 290 256
0.0463 0.9635 0.8505

1.00< p;p <125 187 179 172
0.0288 0.9572 0.9198

1.25<p;¢p <150 103 103 102
0.0158 1.0000 0.9903

1.50<pp 114 114 114

0.0175 1 1

Total 6,450 3,226 2,534
Fraction of Total 1 0.5002 0.3929

Note: Theadjustment factor isestimated for each of the SGT residual distributionsfrom
6,450 SGT CAPM regressions. Theabovetableisbased on asampleof 6,450 stocks, because
52 stocks had estimated values for n; < 1, thus p; ¢, was not defined. Samplesizes used in the
estimations range between 1,001 and 2,519 daily stock return observations obtained from
CRSP for thetime period 12/1/1995 to 12/31/2004. For the computation of the significance
frequency rates of the intercept adjustment factor we used the robust t-values of 4's.

CAPM regressions; i.e., 52 regressions yielded estimated values for n;
< 1. Thelast two columns give the number and fraction of p,¢’sin each
classinterval that are statistically significant at the 5% and 1% levels,
respectively. Noticethat theresultsare quite analogousto those of table
3. This is a byproduct of the fact that the adjustment factor is driven
mainly by theskewnessparameter ;. Interestingly, theadj ustment factor
isin many instances greater than 0.5 or 50 basis points.

The estimated CAPM intercept bias due to skewness b(o;) is
computed asthe difference between intercepts estimated using the SGT
and GT (symmetric) likelihood specification, i.e., b(a;) = agsri—cr;-
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TABLE 5. Rédative Frequency of Intercept Bias Dueto Skewness. SGT vs. GT

N(b(e))/ Significant at the
b(oy) = agsr; —tcr; P(b(a,)) 5% level 1% level
b(e;) <-0.75 37 29 27
0.0057 0.7838 0.7297
—0.75 < b(e;) < -0.50 81 69 53
0.0125 0.8519 0.6543
—0.50 < b(g;) <—0.25 272 211 174
0.0418 0.7757 0.6397
—0.25 < b(e;) <0.00 1,035 690 591
0.1592 0.6667 0.5710
0.00 < b(e;) < 0.25 4,243 2,514 1,720
0.6526 0.5925 0.4054
0.25 < b(e;) < 0.50 659 646 585
0.1014 0.9803 0.8877
0.50 < b(e;) < 0.75 141 141 140
0.0217 1 0.9929
0.75 < b(o;) 34 34 34
0.0052 1 1
Total 6,502 4,334 3,324
Fraction of Total 1 0.6666 0.5112

Note: Theintercept biasis calculated as the difference between the SGT intercept and
theintercept fromits symmetric, restricted (skewness parameter 4 = 0) counterpart, the GT.
Sample sizes used in the estimations range between 1,001 and 2,519 daily stock return
observations obtained from CRSP for the time period 12/1/1995 to 12/31/2004. The test
statistics for the bias significance are based on the log-likelihood ratio test statistic of the
SGT (unrestricted) and GT (restricted) models. Theratiofollows chi-squaredistribution with
one degree of freedom.

Similarly, table5 presentstherelativefrequency and significanceresults
for theintercept bias b(e;). The results show asignificant differencein
theinterceptsof the skewed and symmetric likelihood specifications. In
67% (4,334 stocks) of the cases, thebiasis statistically significant at the
5% level and 51% (3,324 stocks) are significant at the 1% level. Recall
that in table 3, 50% of the regressions’ residuals distributions had
significant skewness. The fraction of stocks that have significant bias
with negative biasis 23% (999 stocks) and significant positive biasis
77% (3,335 stocks).

These results provide strong empirical support that when skewness
ispresent inthedata, the use of symmetriclog-likelihood specifications
or “symmetric type” robust estimation techniques will result in biased
regression intercepts. This issue along with the issue of efficiency of
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various estimators is further investigated in the next section using
simulations.

V. Simulations and Estimation Perfor mance

We use Monte Carlo simulations to assess the effects of tail thickness
and/or skewness of theerror distribution ontherelative efficiency of the
variousregression estimators of CAPM’ sintercept. In additionto OLS,
LAD or Laplace, GED, student’s T and GT -based estimators, used in
prior studies, we consider the skewed specificationsof Laplace (SLAD),
GED, student T and GT estimators. These results extend those reported
in Manski (1984) and McDonald and White (1993).
Specificaly for the simulations, we use the CAPM model

rt=a+/3ert+5t,

wherer,, istheexcessmarket return for the entire sampling period (i.e.,
2,519 observations), and g and r, are arandomly generated error terms
and stock returns. A value of zero for the alpha and one for the beta
(i.,e,a=0andp =1), areused in all random samples.

Following McDonald and White (1993), the regression errors are
generated usingthe(1) normal, (2) mixed-normal (thick-tailed variance-
contaminated), and (3) skewed log-normal distributions. Specifically,
the normal error term is generated by &, = o z, where z ~ N(0,1). The
thick-tailed variance contaminated error distributionisgenerated by &,=
o [wz +(1 —w) z)], where z, ~ N(0,1/9), z, ~ N(0,9), and w= 1 with
probability 0.9 and w = 0 with a probability of 0.1. Thisdistributionis
symmetric and has a standardized kurtosis of 24.33. The log-normal
distribution is generated by &, = o (€*°%=€"1%)/(e”>—"%)%5, where z ~
N(0,1). This distribution has standardized skewness 1.75 and
standardized kurtosis of 8.898. The standard deviation ¢ is computed
using the equation ¢ = [(UR?)-1]°° || oy, With B =1, o, = 1.1195
(standard deviation of ry,, in the sample) so that the corresponding R? =
0.0879 is equal to the average CAPM R for all stocksin the sample.

One thousand and fifty replications of samples are generated with
the same three error distributions to estimate the alpha and beta
parameters. Table 6 presents the means of the regression alphasfor the
normal, normal mixture, and log-normal samples and associated t-
statisticsin parentheses. Notethat for the case of the normal and normal
mixture random data the hypothesis of unbiased estimates of the



Multinational Finance Journal

308

uoNNgLISIP 1 pezifeieueb peneys (198 ‘UolngLISIp 1 pezifeeusb 119 ‘UonnquIsIp 1

POMBYS : 1S ‘UONNGLISIP 1S JUSPMS 1| UONNGLISIP Jo1ie pozifeieush pameys ‘39S ‘UolNgLISIp Jole pezifeieush :g39D ‘UoNNGLISIP UOIEIASP
2IN|ose 1Se3| poMaYS (VIS ‘UOINGLISIP UOIRRIASP SIN|osae 15ea| a1 ‘sefenbs 1sea| Aruiplo 'S0 (0} 9JoJ SIORW 1SS 3U) Jo) SWwAUOoIIe 8y |

1591 P3| IB}-OM) B 0} [9A8] 94G SU} Je 30URD 1 1UBIS [eONISITRIS 0} SRJRI «

"3UO W01} 3UBIBHIP OU JO S1sayiodAY |InuU 8y 1591 Sa1ISI1eIs-19d0|S "048Z W) 83U 44 Ip OU Jo sisaylodAy [nu syl 1sa1 (saseyiuased ui) sonsiels-1
1deoseIu]| 'suonnNgLISIp enpisal (Pamexs) fewjou-Bo| pue ‘(pa]eI-¥1ys) [eWIouU-paxXIW ‘ [eLIoU Yiim paLuioied 8JoMSUo IR (NS 0S0'T JO 18S yoe]
"0°0 40 120! Ue pue 0'T Jo adojs e Y1im patelaual SUOIIRAIRSIO BTG JOSUOIRINWIS OG0T UO paseq aJe suoie|nwis desisiooqayl @10N

(00'0-) (Teo0) (zeooH) (920°0-) (900°0-) (2T0°0) (£90°0) (6g0°0-) (900°0-)
6/866°0 ¥6866°0 £6866°0 19866°0 956660 626660 16966°0 2v166°0 29666°0 rewioN-Bo
(ee0'0-) (ce0'0) (6770°0-) (870°0-) (8v0°0-) (L¥0'0-) (0z0'0) (0z0'0) (¥10°0)
LT666°0 616660 £/866°0 118660 19866°0 ¥9866°0 62666°0 TE666°0 68000'T [EWLION-XI]N
(ov0°0) (ov0°0) (ov0°0) (6£0°0) (Tv00) (Tv0°0) (ev0°0) (££00) (Tv00)
99200'T 29200°T £9200°T 9G200'T 69200'T 1200'T G9E00'T TIE00'T 89200'T [eLLION
ado|s 'g
(8sc'0-)  «(68TH) (89c'0-)  «(8zz'8) (GeT0-)  «(59T°2) (820°0) «(802°6-) (c00'0-)
2/S200-  T/92V'0—  6¥9200—  86829'0—  L0TTO0—  +9.6T0 T9S00°0-  $28G.°0—  E£T000°0— [ew.IoN-6o
(2100-) (ct00-) (¥10°0-) (8T0°0-) (610°0) (€00'0-) (e00'0) (s00°0-) (900'0-)
LETO000-  E000'0— 60000— 9S000°0— €90000— GTOOO'0O— 620000— T2000°0—  /¥000'0— [EWLION-XIIN
(€10°0) (¥10°0) (¢T0°0) (910°0) (2000) (2000) (€T00) (9000) (600°0)
¥6000°0 TOTO00 /80000 817000 60000 Z1000°0 £6000°0 650000 890000 [eULION
1000/ "V
195 19 1S 1 a3Ios aam avTs av S0

suole|NWIS woJjadols pue 1de0PIU| Jo UBBN 9 319V.L



Robust Regression Estimation Methods and | ntercept Bias 309

regression intercept cannot be rejected at traditional levels of statistical
significance for any of the estimators. In the case of log-normal
(skewed) random dataall of the symmetric modelsexcept OLS, i.e., the
LAD, GED, student's T and GT provide biased estimates of the
regression intercept. OLS estimators will be unbiased whenever the
error terms have a zero mean and are uncorrelated with the regressors.

They will beinefficient for non-normal error distributions such asthose
characterized by skewness or thick tails. The skewed models provide
unbiased estimates of the regression intercepts. In the case of the dope,
however, all models, symmetric and non-symmetric, provide unbiased
estimates of the regression slopes.

Table 7 provides root mean squared errors (RMSE) of the nine
estimation procedures in each of the three simulation samples for the
intercept and slope estimators. The RM SE, computed asthe squareroot
of the sum of the sampl e variance of each estimator and the square of its
sample bias, measures how close the estimator isto the true parameter.

Panel A of table 7, presentstheresultsfor theintercept estimator. In
the case of the normal random sample, all models except LAD exhibit
similar RMSE performance, thus there appears to be little efficiency
loss for the intercept estimators relative to the OLS estimator. For the
mixed normal random sample, thestudent’sT and GT estimatorsarethe
best. The latter estimators are slightly better than the LAD and GED
estimators. The remaining estimators are clearly inferior. For the log-
normal random sample, OLS and all skewed estimators, including the
ST and SGT, exhibit similar performance.

Panel B of table 7, presentsthe resultsfor the slope estimator. Inthe
case of thenormal random sample, all slope estimators, except for those
of LAD and SLAD, exhibit similar RM SE performance. For the mixed-
normal sample, the student’s T, ST, GT and SGT slope estimators are
the best. Their RMSE values are about 86% of those of GED and
SGED, 71% of those of LAD and SLAD and 40% of that of OLS.
Finally, inthe case of thelog-normal sample, the ST and SGT appear to
be the best slope estimators, followed closely by the SGED estimator.
The RMSE values of ST and GT are about 80% of those of SLAD and
GT, 75% of that of student’s T and about 63% of those of OLS, LAD
and GED.

In sum, the simulation results for the intercept and slope estimators
show that @) al models, except the LAD and SLAD, exhibit similar
performances in the normal random sample, b) the student’s T and GT
are best estimatorsin the mixed-normal sample and c) the ST and SGT
are the best estimators in the log-normal sample. Overal, the results
favor the T and GT estimatorsin leptokurtic symmetric dataand ST and
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SGT estimatorsin skewed data. In normal samples, the OL S estimators
are preferred because of their simplicity.

V. Summary and Concluding Remarks

This paper introduces a genera class of quasi-maximum likelihood
regression estimators based on the SGT distribution. This class of
estimators includes the OLS, the LAD, the L,, the trimmed regression
guantile estimators, M-estimators, and the quasi-maximum likelihood
estimators of symmetric and skewed student’ s T, Laplace, GED and GT
probability distributions. As such, the SGT distribution provides a
unified framework to investigate the impact of skewness on the
estimated regression parameters of the various estimators and compare
their relative efficiency in diverse types of data.

The importance and relevance of the various robust estimation
techniques and impact of skewness on the estimated regression
parametersisdemonstrated usingthe CAPM, whichinvolvesregressing
individual stock excess returns on market excessreturns, and the entire
universe of all publicly traded U.S. stocks with at least four years of
data. A preliminary analysisof CAPM’ sregression residual sdepict that
about 97% of the stocks exhibit significant skewness and/or excess
kurtosis, 79% of them exhibit significant positive skewness and 9% of
them exhibit significant negative skewness. These results provide
overwhelming support for the use of robust type estimation techniques
for CAPM’ sestimation, and, more generally, any regression analysis of
stock returns where the intercept is important. The empirical results
include the impact of the occasional extreme error outlier as well as
skewed errors.

Empirical and theoretical analysis shows that when skewness is
present in the data, quasi-maximum likelihood estimation techniques
based on symmetric probability distributions produce biased estimates
for the regression intercepts. Thelatter biasis negative with negatively
skewed data and positive with positively skewed data. The simulation
results are generally consistent with the results of Newey and
Steigerwald(1997) which show that a QMLE with a mis-specified
symmetric error distribution provides an inconsistent estimator of the
intercept when the true error distribution isasymmetric, but the QMLE
can provide a consistent estimator of the intercept when the assumed
error distribution is asymmetric and nests the true error distribution.
The assumed error distribution, the SGT, does not include the log-
normal asaspecial or limiting case, but allowstheflexibility to capture
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the corresponding skewness and kurtosis. The latter has significant
implications for finance, since the CAPM intercept, or Jensen’s alpha,
is frequently used in portfolio selection and stock and mutua fund
valuation.

The simulation results using the normal, mixed-normal (thick-tails)
and log-normal (positively skewed) random samples show that: a) al
models, excepttheLAD and skewed LAD, exhibit similar performances
in the normal random sample, b) the student’'s T and GT are the best
estimators in the mixed-normal sample and c) the ST and SGT are the
best estimators in the log-normal sample. Overall, the results favor the
student’sT and GT estimatorsin leptokurtic symmetric dataand the ST
and SGT estimators in skewed data. In norma samples, the OLS
estimators are preferred because of their simplicity and to avoid
efficiency loss from over-parameterization from having to estimate un-
necessary distribution parameters.

The above findings are rel evant and important to researchersin any
area interested in unbiased and efficient regression estimators.
Examplesof skewed and/or leptokurtic datafrom other fieldsinclude @)
building electricity usage data, e.g., Parti and Parti (1980), Hartman
(1983), Bartelsand Fiebig (1990); b) economic housing price data, e.g.,
Hansen, McDonald, and Turley (2006); c) meteorological solar
radiation predictions and wind shear analysis data, e.g., Younes and
Muneer (2006), Kanji (1985), Jones and McLachan (1990); and d)
aeronautical flight navigation risk analysis, e.g., Hsu (1979).

Accepted by: Prof. R. Taffler, Guest Editor, November 2009

Appendix A: Adjustment Factor and SGT Moments

The sth non-centered moment of u=r —(m+ fr,, ) for integer values
of s<nis
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Gradshteyn and Ryzhik (1994, p. 341) show that

J'us(1+ quk)fd du =k- q<3+1)/k|3(dk—l(<3+1) s:l

0

j (A.2)

where0< (s+1)/k<d,q#0andn # 0.
Leting g =((n+1)/k)(1-2) "¢ or g=((n+1)/k)(1+ 1) o™
and d = (n +1)/k and substituting into the M, equation A.1 gives

s+l
M, =[ (-0°(1-2)" + 1+ z)“}cw(“?*lj ‘ B(—”_S,Siqufﬂ.

k Kk
(A.3)
For f(.) to be proper probability density function,
1
n+1\k _(n 1
M,=2Ck™"| —=| B| —,= |p=1, A4
=20 (M (2o (a.4)
_(1] a
thus C = 5k H | gD 1) o (A.5)
k k k
Substitution of C equation A.5 into the M, equation A.1 gives,
M, =08[ (-1)°(1-2)"" +(1+ 2)™" ]
(A.6)
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B ﬂ,i n+1 kB n—s,s+1 o
k k k k k

The expected value of u, provided that n >1, is

n1)" n+1% n-12
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1
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The second non-centered moment of u, provided that n> 2, is

E(u?)=M, =05| (-1)" (1-2)"+(1+ 2)’|
(A.9)
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In this case the variance of uis

o’ =E(u*)-E(u)’ =(y-p*)¢". (A.11)

where y —7* > 0 (see below). In equation A.10 the variance, expressed
intermsof ¢, existsfor aslong as n > 2, athough the value of ¢ exists
for any value of n > 0. Note that

1
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n1)" _(n-2 3
_S(A)B[E,Ej B(T’EJ >0, (A.14)

because §(1) > 0O (the latter can be easily proven using the Stirling’s
approximation of the gamma function).
The third non-centered moment of u, provided that n > 3, is

E(0?) =M, =05] (1)’ (1-2)" +(1+2)'
(A.15)
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The third center moment is,

m,=E(u-M,)’ = Eu®~3M,Eu® +3MEu-M; (A.17)

= AP’ =3y pp° +2p°p° = (A -3y p+2p°) ¢° = Ap® (A.18)
The fourth non-centered moment of u, provided that n > 4, is
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The fourth centered moment of uis

m, = E(u-M,)" = Eu* — 4M,Eu® + 6M 2Eu® — 4MEu+ M/ (A.21)

=(Ah—4A§p+6yp2—3p4)(o4. (A.22)

The skewness and kurtosis measures are

~3yp+2p°
w =T APt (A.23)
o (r-F)
and
_ 2 4
ku =T A= dAp +627p2 3p (A.24)
g (r=¢)

Appendix B: Popular Distributions Nested by the SGT

The skewed generalized T (SGT) distribution, developed by
Theodossiou (1998),

-sw(22] P 2

(B.1)

SN
Ao !
v {1 ((n+1)/k)(1+sign(u)/1)kgo"J

“nests’ several well known distributions.
For 2 =0t givesthe generalized T (GT) of McDonald and Newey
(1988)

1
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McDonald (1989), McDonald and Newey (1988) and McDonald and
Nelson (1989) used the GT to develop partially adaptive estimation of
regression models. Butler et a. (1990) discussed the robust estimation
of CAPM using the GT.

For k = 2 it gives the Hansen's (1994) skewed T (ST)

NN o -
) el3) ¢ (“<<n+1>/2><1|+|99”<uﬂ>2A |

(B.3)

used in autoregressive conditional density estimation.
For k= 2and . =0it givesthe student’s T distribution,

L (nay uf* %)
[ [ JB(E,;) 4#} s

often used in log-likelihood specifications of data characterized by
excess kurtosis, e.g., Bollerslev (1987).
For n= 1and A = 0it gives the Cauchy distribution

1 |U|2 N
= 1+ B.5
(7z¢) ( + (02 (B.5)

For n =« it gives the skewed generalized error distribution (SGED) of
Theodossiou (2001)

1 -1 B |u|k
f =0.5Kk| = - . (B6
(k) v exp( (1+sign(u)/1)kgka (B0

and for A = 0 the generalized error distribution (GED)

f_05k1“(kj @ exp{ | | J (B.7)
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The GED, introduced by Subbotin (1923), was used by Box and Tiao
(1962) to model prior densitiesin Bayesian estimation, by Zeckhauser
and Thompson (1970), Nelson (1991) and many others to model the
distribution of financial return data.

For k = 2 andgp:\/ia and 4 = 0 the SGED gives the normal

distribution.
2
u
f :#exp —| |2 (B.8)
\27o? 20

For k = 1, it givesthe skewed Laplace distribution

_ 05,1 _ Jul
f =0.5¢ exp[ (1+sign(u)/1)go (B.9)

and for k= 1 and A = 0 the Laplace distribution
1 Jul
f =050 exp| ——|. (B.10)
4

The Laplace distribution has found some very interesting applications.
For example, Hsu (1979) used the L aplace to model the distribution of
position errors in navigation, Kanji (1985) and Jones and McLachan
(1990) to model the distribution of wind shear data and Bagchi, Hayya
and Ord (1983) to model demand during lead and slow times.
Interestingly, maximum likelihood estimation using the GED,
L aplaceand skewed L aplace specificationsyield somevery well known
estimators often used in regression estimation. Specifically, the GED
log-likelihood specification, for afix value of k, yields the L, estimator

N

Note that for k = 2, equation B.11 gives the OLS estimator.
The Laplace log-likelihood specification yields the Lad or MAD
estimator



Robust Regression Estimation Methods and | ntercept Bias 319

I afG(rgip;MIJ , (8.12)

theskewed Laplace (SL) log-likelihood specificationyieldsthe (SLAD)
the trimmed regression quantile (TRQ) estimator of Koenker and
Bassett (1978); see also Chan and Lakonishok (1992),

(@ 8)qno :arg(rgliﬂnip(ut)} (B.13)

t=1

where p(u,)=u,/(1-2)foru <0and p(u)=u,/(1+ 1) for u >0,

where—1 <\ < 1; notein thetrimmed regression quantileliterature 1/(1
—)=6and Y(1+4)=1-6,with0<6<1.
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