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This paper discusses a selected literature on continuous-time option games
models, providing new insights and extensions. The paper analyzes both
symmetrical and asymmetrical duopoly under uncertainty, including issues like
preemption, non-binding collusion, perfect-Nash equilibriums, first-mover
advantage, mixed strategies, probability of mistake with simultaneous exercise,
competitive advantage effect, etc. In the first model, the demand follows a
stochastic process, whereas in the second model the exchange rate follows a
stochastic process. This paper presents two equivalent ways to calculate the
leader and follower values and thresholds, the differential and the integral
methods. The paper extends the Joaquin and Buttler’s model by considering
mixed strategies in asymmetric duopoly and other extensions.  (JEL: G31, G12,
C72, C73)
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preemption.

I. Introduction

The theory of corporate finance in general and especially capital
budgeting, has been experimenting a fast and rich development in the
last 30 years. Most of these new theoretical tools and practical insights
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come from the development of two theories. First, the option pricing
theory and contingent claims approach developed by the seminal papers
of Black and Scholes (1973) and Merton (1973). Second, by
applications of game theoretic concepts to corporate finance problems
starting in 70's mainly asymmetric information between agent and
principal with signalling games in papers like Ross (1977), Leland and
Pyle (1977), Bhattacharya (1979), and Myers and Majluf (1984).

Myers (1977) coined the term “real options” for investment
opportunities in projects (real assets), starting a capital budgeting
revolution. Real options models started with Tourinho (1979), Kester
(1984), Brennan and Schwartz (1985), McDonald and Siegel (1986),
Trigeorgis and Mason (1987), and Paddock, Siegel, and Smith (1988),
just to mention a few of the best-known cases.

The real options theory allowed a proactive approach to investment
decisions in conditions of uncertainty, highlighting the value of the
managerial flexibility under uncertainty. Before real options,
uncertainty was only a matter of appropriate discounting through an
adequate risk-premium, a limited view on the manager's role facing
uncertainty in projects and real assets in general. With real options the
foundations for a modern theory of investment under uncertainty were
established. However, the problem of investment under uncertainty and
under competition was demanding a more rigorous framework. The
earlier real options attempts to model competition considered as
exogenous either an estimated entry or a random entry of competitors,1 
instead an endogenous rational entry of competitors.2 Game theoretic
concepts for models with strategic interaction between firms were not
addressed in real options models until the beginning of 1990s.

The practical and theoretical demand of real options models
considering also a rational strategic interaction between the “players”
– the option exercise of one player changing the real option values of
the others players, led to the birth of continuous-time option games3 

1. Before option games models, the best known attempts that appeared to model the
competition effect were: Kester (1984) considering a finite time to expiration of a real option,
with this time being function of an estimated competitors entry destroying the firm's real
option; Trigeorgis (1986, 1991), the competitor preemption effect is modeled as “additional
dividends” that are lost by the (non-exercised) real option owner; and also in Trigeorgis
(1986, 1991), the competitor entry is modeled with a Poisson process, with the competitor's
random arrival causing a jump-down in the project value.

2. Rational entry of competitors includes cases with mixed strategies and Bayesian
strategies (incomplete information), because the probabilities in this context are calculated
from players' strategies with mutual interaction rationality.

3. The term “option games” first appeared in Lambrecht and Perraudin (1994).
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literature in the beginning of 90's with the Smets' dissertation (1993,
after a working paper in 1991).4 Discrete-time option games started with
Smit and Ankum (1993), providing an intuitive approach for important
option games models, with additional insights in Smit and Trigeorgis
(1993).5

Game theory is a well-established tool in industrial organization and
modeling of imperfect competition. However, standard game theory
alone ignores the advances of finance theory on risk-return and on
managerial flexibility value under uncertainty. Game theory and options
pricing are complementary approaches, providing together a framework
with rich potential of applications. Both theories won the Nobel Prize
in Economics in the 1990s, game theory in 1994 with Nash, Selten,
Harsanyi, and options pricing theory in 1997 with Scholes and Merton
(with references to project applications - real options, by the Swedish
Academy communication).

About the combination of option pricing and game theory, Ziegler
(1999, p.133) wrote: “… game theory analysis of options in effect
replaces the maximization of expected utility encountered in classical
game theory models with the maximization of the value of an option …
option-pricing approach has the advantage that it automatically takes the
time value of money and the price of risk into account”. He also
highlights the “link between markets and organizations” with options
setting payoffs using market criteria and game theory taking the
structure of organizations into account.

The first (real) option games textbook appeared with Huisman
(2001), focusing important theoretical models of option games in
continuous-time mainly for technology applications. In the same line,
Thijssen (2004) is a recent monograph with models that consider the
reduction of uncertainty along the time. Before, Grenadier (2000) edited
a good selection of option games papers. A nice new addition is the
recent textbook of Smit and Trigeorgis (2004) focusing mainly
discrete-time option games models, in a light and thorough approach,
with many practical examples.

4. This model was summarized in the first real options textbook, the outstanding work
of Dixit and Pindyck (1994, chapter 9). These authors took the attractive risk to include in
their book the just born option games model of Smets (1993) that was starting a new
literature. The price was two minor misunderstandings pointed out by Huisman and Kort
(1999).

5. The latter is well summarized in the very good real options textbook of Trigeorgis
(1996, chapter 9).
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It is not by chance that most contributions in option-games come
from real options researchers rather than game-theoreticians. Although
knowledge on game theory is always necessary for the financial
engineer to develop option-game models, tools like stochastic processes
and optimal control are more useful than fixed-point theorem, a typical
game-theoretic tool. However, another promising way to solve
option-game models comes from two game-theoreticians, Dutta and
Rustichini (1995), who proved that the best response map satisfies a
strong monotonicity condition, which is used to set the existence of
Markov-Perfect Nash equilibriums. Another related school that can
contribute to option games literature comes from researchers in optimal
control, e.g., Basar and Olsder (1995) and Dockner et al. (2000), mainly
the stochastic differential games branch. However, the bridge between
option games and that branch in optimal control literature remains to be
constructed.

Although many new papers have been written in the last years, the
combination of real options with game theory has a large potential of
new models considering the vast individual literature on game theory
and real options. The main goal of this paper is to show two equivalent
methods to solve continuous-time option games, presenting typical tools
and the key concepts used in these models.

The next section presents a discussion on threshold strategies in the
option game literature and presents the main proposition, the two
methods to solve option game models. Section III illustrates the
proposition with the symmetrical duopoly model, showing the two
equivalent ways to calculate both values and thresholds, and with
discussion on mixed strategy equilibrium and the possibility of
non-binding collusion equilibrium. Section IV discusses the
asymmetrical duopoly model, extending the model of Joaquin and
Buttler (2000) with a mixed strategy proposition for asymmetric
duopoly under uncertainty. Section V presents some conclusions and
suggestions.

II.  Thresholds Strategies and the Two Solution Methods

Timing games or optimal stopping games are games where the players'
pure strategies are stopping times choices. So, at each moment the set
of actions for each firm i is Ai(t) = {stop; don't stop}, see e.g.,
Fudenberg and Tirole (1991, p.117). Here “stopping time” means the
time to stop the “wait and see” policy by exercising the real option.
These types of games can be classified into two categories: games of
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negative externalities (e.g., preemption games) and games of positive
externalities (e.g., war of attrition). Here the focus is the case of
two-firm (duopoly) preemption games in continuous time. 

The game modeling aim is to find out the equilibrium strategies.
These strategies are the players’ best response considering the rivals’
best response. For finite games, we can optimize backwards (backward
induction) from the option expiration (t = T) until the initial moment (t
= 0). In this way, these strategies are SPNE (subgame perfect Nash
equilibrium) because induces a Nash equilibrium (NE) in every
subgame (starting at any time t). This is just the dynamic programming
approach, which is largely used in real options. Dynamic programming
can be used for perpetual options (e.g., see Dixit and Pindyck, 1994,
chapter 4), so that it is also applied to infinite option games. This case
is generally easier because time is not state variable as in finite games. 

As usual in stochastic games, we limit our focus on the Markov
equilibria, i.e., equilibria that are function of the current state of the
stochastic variable only,6 which follows a Markov process. Markov
equilibriums are also subgame perfect. We want identify at least one
Markov perfect equilibrium (MPE). In the text, when referring to SPNE,
we are implicitly considering MPE only. The best-known continuous
time option game models are solved with optimal strategies named
simple threshold strategies (or simple trigger strategies), which are the
basic elements of the option game solution (equilibrium). In this case,
MPE strategies are stopping times related to the infimum time in which
the stochastic variable hits the threshold level.

Compared with traditional real options models, the main difference
is that option game models also consider (endogenously) the rival’s
optimal option exercises, i.e., equilibrium strategies are simultaneous
best responses. In most cases, the optimal real option exercise is given
by a simple threshold strategy, that is, the state variable (e.g., a price P)
follows a stochastic process and when P hits a threshold level P*, one
player (or many players) exercises one real option. This optimal
exercise can be also characterized by optimal stopping time (t*), i.e., the
infimum time that the state variable (P) hits the threshold level (P*).
This simple option exercise strategy is very common in both real
options and option games models. For instance, the classical Smets
(1993) model is based in simple threshold strategies for the leader and
the follower. 

6. The current state variable summarizes the direct effect of the past on the current
game, see Fudenberg and Tirole (1991, chapter 13).
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However, there are some cases (in both real options and option
games models) in which the optimal option exercise is not so simple.
Instead a simple threshold, we can have disconnected option exercise
sets (or disconnected stopping sets), which can produce apparent
paradoxical results. A (non-strategic) real options example is presented
by Dias, Rocha, and Teixeira (2004), with three mutually exclusive
alternatives of investment scale for a project. There are intermediate
waiting regions for the state variable price (P), so that is possible to
exercise the investment option (using a specific scale alternative) if the
price drops – an apparent paradoxical result.7 In the option game
context, Décamps and Mariotti (2004) presents an example where is
necessary to consider the disconnected option exercise sets issue. In
their model, does not exist a 1-1 correspondence between what the
players know about the project value (underlying asset V) and the
option exercise price (the investment I) generating these disconnected
sets. In some cases, even when considering disconnected sets is more
rigorous, researchers assume only simple thresholds strategies. One
example is Lambrecht (2001, p.771): with the assumption that firms use
only simple thresholds strategies, he discards both mixed strategies and
non-intuitive Nash equilibria such as the market abandonment of one
firm when the price rises. Although some SPNE disappear in this way,
the most natural SPNE is considered.  

Here the paper focuses only on the most common case, i.e., the
simple threshold strategies option games. For this large class of real
option games, the following proposition is valid.

Proposition 1: Consider the class of real options games in continuous
time in which the players use simple threshold strategies. There are at
least two equivalent solution methods to solve these games. The first
one is the differential method and the second one is the integral method.
These two methods are summarized below:

Differential Method: uses traditional methods of real options, i.e.,
stochastic differential equations (ordinary or partial) describe the
player values. The player strategies optimization is performed
considering endogenously the rival’s best responses, through the
boundary conditions of smooth pasting and value-matching (see
Dixit and Pindyck, 1994).

7. The intuition is as follows. At time t the firm is waiting for a larger scale alternative.
But if the price drops at t + Δt to a sufficient lower level, decreases the probability for the
prices to reach the higher threshold set from the larger scale alternative, so that is optimal to
stop the waiting policy and exercise a lower scale alternative.
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Integral Method: uses the expected value of a sum of stochastic
integrals to describe the player values. The integration limits are
optimal stopping times combined with trivial limits (0 and 4). These
stopping times are defined as the infimum times that the stochastic
variable hits the threshold values. The players’ simultaneous optimal
response is performed with traditional optimization methods, like the
first order condition, and with the expected value of the stochastic
discount factor.

 
This proposition is showed with the classical duopoly example in the

next section, where is presented both methods, showing that these
methods are equivalent in the sense that lead to the same players’ values
and the same thresholds. For this class of games, the players’ values and
the strategic thresholds are sufficient to set the equilibrium(s) in pure
strategies or in mixed strategies. With the differential method the
threshold strategies are placed at the boundary conditions, whereas with
the integral method the thresholds strategies are represented by stopping
times placed at the integration limits. With simple thresholds, it is
always possible to represent the player value as the sum of integrals,
dividing the time [0, 4) into intervals like [0, t1*) plus [t1*, t2*) plus [t2*,
4), etc. Generally analytical solutions are obtained for infinite
(perpetual) option games, whereas for finite real option games, time
becomes state variable and generally are necessary numerical methods. 

In many cases these two methods were combined, e.g., in Dixit and
Pindyck (1994, chapter 9) the differential method was used to obtain
both the follower’s value and the follower’s threshold, whereas the
integral method was used to get both the leader’s value and the leader’s
threshold.8 Here is showed that the differential method can be used also
for the leader (value and threshold) and the integral method can be used
also for the follower (value and threshold). In order to calculate the
leader value and the leader threshold with the differential method just
use the differential equation for leader value during its monopoly
phase,9 considering as boundary condition the time that the follower
exercises its option (making concave the leader value function). The
analysts of this symmetrical duopoly model did not previously note this. 

In addition, the integral method can also be used alone to solve this
game: the follower value can be obtained with a single stochastic

8. Dixit and Pindyck didn’t calculate explicitly the leader threshold, but was obvious
(p.312) that a simple numerical algorithm finds this threshold.

9. But not the value of the option to invest (to become leader), which is not required in
the game solution.
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integral with limits t* and 4, where t* is when the follower exercises its
option.10 This integral is solved with the help of the expected value of
the stochastic discount factor, giving the follower value as function of
its threshold. This threshold can be obtained with traditional
optimization tools (first order condition) and again with the expected
value of the stochastic discount factor. In more general cases, we can
have a sum of two integrals (like the leader value in Dixit and Pindyck)
or more. It depends on the relevant optimal stopping times, which divide
the game phases (and so the integration limits) according the option
exercises, e.g., one phase without exercise, a phase with one firm with
monopoly, and one phase with both firms producing (duopoly). 

There are situations in which one method is simpler than the other
and vice-versa. The following two sections on duopoly models illustrate
these methods.

III. Symmetrical Duopoly under Uncertainty

The symmetrical duopoly under uncertainty model was the first known
option games model (Smets, 1993). In addition to the historical
relevance, this model has a great theoretical importance – foundations
of stochastic timing-games of preemption in continuous-time, and also
practical significance for duopoly when there is no competitive
advantage for one firm. This section summarizes the in-depth analysis
performed by Huisman and Kort (1999). They extended the previous
literature (Smets/Dixit and Pindyck) in many ways, especially by
allowing mixed-strategies equilibrium and analyzing the possibility of
non-binding collusion equilibriums. In addition, they presented many
propositions that establish the conditions for the occurrence of different
equilibriums, in a rigorous approach. For sake of space is presented only
selected results.11 The explanation here addresses only some minor
modifications on the original notation. However, this present paper
includes some issues not discussed in that paper, e.g., the two ways to
calculate the value of the follower and the leader and some additional
explanations not mentioned in that paper.

10. In the traditional real options context, the integral method is well discussed in Dixit,
Pindyck, and Sødal (1999).

11. For  a dd i t i o na l  r e s u l t s ,  d i s c us s i ons ,  a nd  c ha r t s ,  s ee :
http://www.puc-rio.br/marco.ind/duopoly2.html
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This duopoly model is symmetrical in the sense that the players are
homogeneous firms (equal firms), so that this suggests symmetrical
strategies.12

The first difference of Huisman and Kort model – when compared
with Smets or Dixit and Pindyck, is that the two firms are already active
in the market producing one unit each, and they are considering the
exercise of (a definitive) one perpetual option to expand the production.
This means that the “entry” (read expansion) of a firm affects the
current profit flow of the other firm – reducing the profit flow because
this model considers negative externalities. The investment to expand
the production (exercise price of the real option) is the same for both
firms and denoted by I.

The firms face a (inverse) demand curve expressed by the profit flow
P(t) for firm i given by:

(1)( ) ( ) ( , )i jP t Y t D N N= ⋅

Where Y(t) is the stochastic demand shock following a geometric
Brownian motion (GBM):

(2)/dY Y dt dzα σ= +

Where α is the (real) drift,13 σ is the volatility, and dz is the Wiener
increment.14 Assume that the process starts with Y(t = 0) = 1. Of course
others stochastic processes are possible.

D(Ni, Nj) is a deterministic demand parameter for firm i, which
depends on the status of firms i and j. The possible values of D(Ni, Nj)
are:

12. We avoid formalism in the strategies description, preferring a complete but more
intuitive approach. In the paper will be clear either option exercise or waiting strategy for
each state of nature (that changes along time) and conditional to the other firm strategy.
However, a more formal strategy description for continuous games of timing starting at time
t requires two functions for every player i, (Gi, αi): [t, 1] × [t, 1] v [0, 1] × [0, 1], where Gi(τ)
is a cumulative probability of exercise and  αi(τ) is the atom of probability (see discussion on
mixed strategy). Time is normalized so that an infinite horizon game with time s 0 [0, 4] is
normalized to τ 0 [0, 1] with the transforming function τ = s / (s + 1).

13. For the risk-neutral GBM, just replaces α by the risk-neutral drift = r – δ, where r is
the risk-free discount rate and δ is the dividend yield. The risk-neutral drift is also equal to
α – π, where π is the risk-premium. 

14. Given by dz = dt0.5 . N(0, 1), where N(0, 1) is drawn from the standard Normal
distribution.
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D(0, 0) means that both firms have not invested yet (but there is a
profit flow Y D(0,0) because the firms are already active in the
market);

D(1, 0) means that firm i invested and is the “leader” because the
firm j has not invested yet;

D(0, 1) means that firm i is the “follower” because only the other
firm (j) has invested becoming the leader; and

D(1, 1) means that both firms invested in the market (simultaneous
investment).

These factors D(Nii, Nj) are adjusted to the production level. The
operational cost is zero or it is also included in D, so that P is
interpreted as profit flow instead price. For example, the profit flow of
the leader is Y.D(1, 0), and this profit flow is higher than Y.D(0, 0). That
is, the higher production level when investing and assuming the leader
role, is already included in the value D(1, 0). The change of status from
D(0, 0) to D(1, 0) demands the sunk investment I. In addition, due to the
problem symmetry, when one firm is profiting Y D(1, 0), the other firm
is profiting Y D(0, 1), etc. For the called “new market model” – the
original case of Smets and in Dixit and Pindyck where firms are not
active in the market in t = 0, the case simplifies: D(0, 0) = D(0, 1) = 0.

Huisman and Kort assume that firms are risk-neutral so that the
discounting is performed with risk-free interest rate. However, it is easy
to extend the model to risk-averse firms in contingent claims approach
by supposing that the stochastic process drift a is a risk-neutral drift.

The deterministic demand parameters have the additional constraint
of negative externality (the option exercise of one firm reduces the
value of the other firm) given by the inequality:

(3)(1,0) (1,1) (0,0) (0,1)D D D D> > >

Other model assumption is the first mover advantage, given by the
inequality:

(4)(1,0) (0,0) (1,1) (0,1)D D D D− > −

This inequality says that the gain when becoming leader is higher than
the gain when becoming follower (for the same Y, and considering the
same investment I).
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Before any options exercise (when Y is below the leader threshold
YL), the value of each firm is the current cash-flow profit in perpetuity,
Y D(0, 0) / (r – α), with r > α,  plus the investment option (exercising as
leader or as follower, with 50% each – as we will see later) net of the
competitive losses due to the negative externality from the expected
rival entry.

As standard in timing games, the solution is performed backwards.
This means that first we need to estimate the value of the follower
(given that the leader entered before), and then the leader value given
that the leader knows that the optimal follower entry can happen in the
future. Here is considered that any firm can become the leader (the roles
are not exogenously assigned). Let us see two ways to estimate the
follower value. First, is used the differential method. By using the
traditional contingent claims steps (Itô’s Lemma, etc.) the value of the
follower F is given by the ordinary differential equation (ODE) below.

(5)2 20.5 (0,1) 0YY YY F YF rF YDσ α+ − + =

Where the first three terms corresponds to the homogeneous part of
the ODE, and the last term in the right side is the non-homogeneous
term also called the “cash-flow” because it is the follower profit flow
before the option exercise. Note that this cash-flow term doesn't exist in
the new market model of Dixit and Pindyck, whereas in Huisman and
Kort the follower earns cash flow even before the option (to expand) is
exercised. The ODE solution is a homogeneous solution of type A Yβ1

+ B Yβ2, plus a particular solution, where β1,2 are the roots from the
equation 0.5 σ2 β2 + (α–0.5 σ2) β – r = 0. Economic condition makes the
constant B in the negative root (β2) term equal zero.15

So the solution for the follower's ODE is given by:

  if  (6a)1( ) (0,1) /( )F Y AY Y D r αβ= + − FY Y≤

  if  (6b)( ) (1,1) /( )F Y Y D r Iα= − − FY Y≥

Where YF is the follower's optimal investment threshold. We need to
find out two unknowns, the constant A and the threshold YF. For this, is
sufficient to apply the boundary conditions value matching and the
smooth pasting:

15. Because economic logic tells that when demand Y tends to zero, the follower value
needs to go to zero as well.
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(7a)( )( ) 1,1 /( )F FF Y Y Y D r Iα= = − −

(7b)( ) (1,1) /( )Y FF Y Y D r α= = −

With subscript Y in 7b denoting the first derivative in relation to Y.
Deriving the equation 6a at Y = YF and equalizing to equation 7b, and
equalizing eq.6a at Y = YF to equation 7a, we get two equations with two
unknowns (A and YF). With some algebra is obtained the following
values:

(8a)
11 (1,1) (0,1)

( )
FY D D

A
r α

−β

1

−=
β −

(8b)1

1

( )
1 (1,1) (0,1)F

r I
Y

D D

αβ −=
β − −

Substituting the constant A into equation 6a we finally find the follower
value.

The second way to find both the follower value and the threshold is
the integral method, which is based in the concept of first hitting time
and expected discount factor. Let T* be the first time that the stochastic
variable hits a (superior) level Y* (here Y* = YF). The follower value
here has two components. First the profit flow before exercising the
option (remember that here both firms are active in the market even
before the option exercise), from t = 0 until t = T* (or TF). Second, the
profit flow after the option exercise at YF, net of investment I, from t =
T* = TF until infinite. See the integrals below:16

*
*

0 *

( ) ( ) (0,1) ( ) (1,1)

                   Expected Profit              Expected Profit

                   Before Exercise             After Option Exer

T
rt rt rT

T

F Y E e Y t D dt E e Y t D dt E e I
+∞

− − −⎡ ⎤ ⎡ ⎤
= + − ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
∫ ∫

cise

16. Note that the follower value assumes that the other firm entered as leader at t = 0. 
If instead we want the value of the firm planning to be follower, assuming that the other firm
will enter as leader at TL > 0, three integrals are necessary: one from 0 to TL, with D(0, 0);
other from TF to TL, with D(0, 1), and the last from TF to infinite, with D(1, 1).
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Note that for the new market model D(0, 1) = 0 and the first integral is
zero (Dixit and Pindyck case). At t = T* the firm gets a profit flow in
perpetuity, with present value at T* of YF D(1, 1)/(r – α). By carrying
that in present value, from T* to current instant (t = 0), we obtain:

*
*

0

(1,1)
( ) (0,1) ( )

T
rt rT FY D

F Y D E e Y t dt E e I
r α

− −⎡ ⎤ ⎡ ⎤= + −⎡ ⎤⎢ ⎥ ⎣ ⎦ ⎢ ⎥−⎣ ⎦⎣ ⎦
∫

The stochastic discount factor depends only on the stochastic process
parameters and the discount rate r, and is given by the very simple
equation below:

(9)
1

*rT

F

Y
E e

Y

β
− ⎛ ⎞=⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠

For the proof, see Dixit and Pindyck (chapter 9, appendix). The value
of the first expectation in the F(Y) equation is given by:

(10)
1 1*

0

( ) 1
T

rt

F

Y Y
E e Y t dt

r Yα

β −
− ⎡ ⎤⎡ ⎤ ⎛ ⎞= −⎢ ⎥⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

For the proof of this expectation, see Dixit and Pindyck (chapter 9,
appendix). Substituting these expectations results (eqs. 9 and 10) into
the last equation of the follower value F(Y), the reader can verify that
we find out the same result for the follower value encountered with the
first method (eqs. 7 and 8a). For the more common case of new market
model, this second method is easier because the equation of expected
discount factor is easy to remember and the first integral is zero.

However, how to calculate the threshold value with the second
method? Let us present a simple method using the standard optimization
approach for the investment decision (for details of this method, see
Dixit Pindyck and Sødal, 1999). 

Let the net present value from the option exercise be NPVF = V(Y)
–I. The maximization of the project is a trade-off between waiting for
a higher value of the project V(Y) and the discount factor (higher as
earlier we exercise the option). If the investor waits for a too high value
of V(Y), they can wait too much and the discount factor can be too
small. In this cost-benefit balance of waiting policy, there is one optimal
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value for Y that maximizes the present value of the expected payoff
from the option exercise, namely the function G(Y):

[ ]( ) ( )rt

Y
G Y Max E e V Y I−= ⋅ −⎡ ⎤⎣ ⎦

The benefit from exercising the option here is V(Y)  =  Y [D(1, 1) – D(0,
1)] / (r – α). Denote the expected discounting factor by R(Y0, YF), that
is (for notational simplicity make Y0 = Y):

(11)( )[ ] ( ) 1( , ) exp * /F FR Y Y E rT Y Y β= − =

So, the maximization problem becomes:

(12)( ) ( ) ( )[ ] ( ){ }( )( ) , 1,1 0,1 /FG Y Max R Y Y Y D D r Iα= ⋅ − − −

The first order condition to maximize the above equation determines
that we take the partial derivative of G in relation to the control variable
YF, equaling it to zero. This results in:

( ) ( ) ( )[ ] ( ) ( ) ( )[, 1,1 0,1 / , 1,1F YF F FR Y Y D D r R Y Y Y Dα⋅ − − + ⋅ −

(13)( )] ( ) ( )0,1 / ,YF FD r R Y Y Iα− = ⋅

The value of derivative of the expected discount factor in relation to YF,
is simply:

(14)( ) ( )11 1
1, /YF F FR Y Y Y Y β +β= −β ⎡ ⎤⎣ ⎦

By substituting both eq. (14) and eq. (11) into the first order condition,
eq. (13), and after a few algebra steps, it is easy to conclude that the
resulting threshold equation is the same of equation 8b, obtained with
the first method. This second method is simpler for the new market
model case.

For the leader value L(Y), we can also apply either of these two
methods. For example, the leader value is given by the sum of integrals
net of the investment cost I:
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( ) ( ) ( ) ( ) ( )
*

0 *

1,0 1,1

                     Expected Profit                 Expected Profit

                 in Monopoly Phase             in Duopoly Phase

T
rt rt

T

L Y E e Y t D dt E e Y t D dt I
+∞

− −⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫

That is, entering as leader the firm experiments a phase as monopolistic
with profit flow Y D(1, 0), and when the follower enters (at t = T* = TF)
the profit flow drops to Y D(1, 1). We can follow with the similar steps
used for the follower case with the second method, in order to calculate
the leader value. However, perhaps it is even easier the first method,
namely the differential equation approach for the value of the leader
during the monopolistic phase, denoted by V(Y) = L(Y) + I. This value
V(Y) needs to match the value of simultaneous investment (follower
value) at the boundary point Y = YF. The differential equation of V(Y) is
given by:

( )2 20.5 1,0 0YY YY V YV rV Y Dασ + − + =

The last term (non-homogeneous part) is the “cash flow”, represented
by the profit flow during this monopolistic phase. Again, the ODE
solution is given by a general solution from the homogeneous part plus
the particular solution related to the cash flow.

(15)( ) ( )
1

1,0YD
V Y BY

r α
β= +

−

The constant B is the parameter that remains to be calculated, requiring
only one boundary condition for that. The biggest difference compared
with the constant A (eq.8a) from the follower value, is that the constant
B is negative, reflecting in the (expected) leader value, the losses due to
the possible future follower investment exercise. This is mathematically
showed below. The relevant boundary condition here is the
value-matching at the point that the follower enters (at YF). The
smooth-pasting condition is not applicable here because this point is not
derived from the leader’s optimal control; it is derived of one
optimization problem but from the other player. This boundary
condition is:

( ) ( ) ( )1,1 /F FV Y Y D r α= −
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The leader value during the monopolist phase is equal to the
simultaneous investment value at YF. Equaling the two last equations is
obtained the value of the constant B in function of YF.

(16)
( ) ( )[ ]

( )1

1,1 1,0F

F

Y D D
B

Y r αβ
−=
−

Note that the constant value is negative because D(1, 1) < D(1, 0). This
means that the effect of the follower entering is to decrease the leader
value, as expected by the economic intuition in this duopoly. The
negative value of the constant means that the leader value function is
concave.

The leader value in the monopoly phase V(Y) is obtained by
substituting this constant (eq.16) into the leader equation (eq.15). 

With V(Y), we can find out the value of becoming a leader, L = V –
I. Hence, the value of becoming leader if Y < YF is given by:

(17)( ) ( ) ( ) ( )[ ]1 1,1 1,01,0 F

F

Y D DY D Y
L Y I

r Y rα α

β
−⎛ ⎞= + −⎜ ⎟− −⎝ ⎠

The reader can verify that this value is the same that could be obtained
by using the (second) method based on the value of the integral
expectations. If Y$YF, the value of becoming leader is equal to the value
of becoming follower, which is equal to the value of simultaneous
investment S(Y):

(18)( ) ( ) ( )1,1Y D
L Y S Y I

r α
= = −

−

The value of simultaneous investment is also important because it is
necessary to answer fundamental questions like: (a) what if I deviate
from the follower waiting strategy by investing? (b) I want to become
a leader, but what if the rival has the same idea at the same time and
both invest simultaneously? In other words, it is necessary to verify if
a follower strategy is a Nash-equilibrium and the expected value (or
expected losses) if by “mistake” both investors invest at the same time
(this will be important for the calculus of mixed strategy equilibriums). 

Note that the simultaneous investment can be the optimal policy for
both players if the state of demand is so high that Y$YF, but a mistake
in case of Y< YF.
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FIGURE 1.— Leader and Follower Values and Entry Thresholds

The remaining issue is the leader threshold. Without the preemption
menace, the firm will invest optimally at the monopolistic threshold YM.
However, due to the menace of preemption, firms cannot wait so long
to invest. If one firm wait until Y = YM, the other firm can invest at YM

– ε, but the first firm could preempt the rival by investing before when
Y = YM – 2ε, etc. This process stops when one firm has no more
incentive to preempt the rival.

Firm 1 has incentive to become leader if L1 > F1 and, most important
for firm 1 decision, firm 1 knows that firm 2 has also the incentive to
become a leader if L2 > F2. So, the firm 1 strategy to become a leader is
to invest when L2 = F2. However, due the symmetry of the problem, L1

= L2 and F1 = F2 for all Y, so that the leader threshold is defined as the
Y in the interval 0 < Y < YF so that the values of the leader and the
follower are equal, i.e.,:

(19)( ) ( ){ }: 0L FY Y Y L Y F Y= < < =

There is a proposition in Huisman and Kort showing that this leader
threshold YL is unique. Due to the symmetry, this threshold is valid for
both firms. 

Figure 1 shows the leader and follower values and the optimal entry
as leader and as follower. The numerical inputs are the same as in
Huisman and Kort’s paper, that is, our base case has the inputs: α = 5%,
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FIGURE 2.— Non-Binding Collusion Strategy as Nash-Equilibrium

σ = 20%, r = 10%, Y(t = 0) = 1, I = 20 (for each firm), and the
deterministic demand factors are D(0, 1) = 1, D(0, 0) = 2, D(1, 1) = 2.5,
D(1, 0) = 4.

Another interesting Huisman and Kort’s extension is that they
consider the possibility of collusion equilibriums without a binding
contract between the firms (without communication). They analyze if
there are situations that a tacit “wait and see” policy is equilibrium.
Firms could calculate if “wait and see” is the best strategy (or not) until
a collusion threshold level Y = YC, when both invest simultaneously (or
one firm invest and the other one invest immediately after that). 

Tacit (or non-binding) collusion will be Nash equilibrium only if
there is no unilateral incentive to deviate. Deviation means to earn the
leader payoff with the other firm choosing optimally to invest much
later as the follower. Denoting the collusion value of each firm by C(Y,
YC), collusion will be Perfect-Nash equilibrium only if C(Y, YC)$L(Y) at
least for all Y in the interval (0, YF). If it occurs, there are infinite
collusion Nash-equilibriums possibilities. From these equilibriums the
Pareto optimal one is to invest at the collusion threshold YC given by:

(20)
( )

( ) ( )
1

1 1 1,1 0,0C

r I
Y

D D

αβ −=
β − −

Figure 2 presents the leader value, the follower value, and the collusion
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FIGURE 3.— Collusion Strategy Destroyed by Preemption

value as functions of the stochastic demand shock Y. The used
parameters were the same of the previous chart. Note that the collusion
value is always higher than the leader value, so that the collusion
equilibrium is feasible (firms in collusion have no incentive to
cheating). For the base-case inputs, the collusion value curve smooth
pastes the simultaneous value line at YC = 5.29, a very high value that
is out of the chart.

If the first-mover advantage is sufficiently large, the collusion can
be destroyed by the preemption. Figure 3 illustrate this point, when is
raised this first mover advantage by setting D(1, 0) = 5.

In the figure 3 there is a region where preemption is optimal due to
the higher value for the leader role when comparing with the collusion
one. So, in this case the firms in collusion have incentive to cheating
and collusion here is not Perfect-Nash equilibrium. 

Now, imagine that the initial state of the demand is between YL and
YF. Both firms have incentive to become leader because L > F (see the
previous figures to clarify this point). There is no logic to imagine that,
without any communication, the other firm will let the rival to become
leader so that the probability of simultaneous investment is zero. Both
firms will wish the higher leader payoff, but both firms fear the
possibility of becoming worse in case of simultaneous investment (a
“mistake”) because the payoff from simultaneous exercise is lower than
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the follower payoff. Assuming non-communication between the players,
the only rational way to treat this problem in the game theory context is
by allowing mixed strategies.17 

With mixed strategies, firms will rationally calculate the optimal
probability to exercise the investment option aiming the leader payoff,
but considering the positive probability of simultaneous investment.
Firms will play a simultaneous game (possibly with infinite rounds)
where the firm i can choose invest with probability pi and not invest
with probability 1 – pi ; players i = 1 or 2.

The mixed strategies analysis in continuous-time preemption games
must be performed carefully and using special tools. The passage from
discrete-time to continuous-time presents problems when using
traditional limit considerations. Fudenberg and Tirole (1985) reported
that the usual methods present “loss of information” in this passage,
with the continuous case not representing the limit of the discrete case.
In addition, with traditional tools many strategies converge with
probability 1 to be played at the instant t = 0, a non-consistent result.

In order to determine the symmetrical mixed strategies, Huisman and
Kort used the same tool applied in Fudenberg and Tirole (1985): they
specify “probabilities” named of “atoms” p(τ) that, if positive, indicate
cumulative probability of exercise Gi(τ) equal to 1. So, τ is defined as
the first time that some player will exercise the option to invest given
that nobody exercised the option before. This kind of resource is taken
from optimal control literature (e.g., see Birge and Louveaux, 1997,
p.289).

The fundamental idea is that this control doesn't take time. Using
this analogy, the control here is the result of a simultaneous game that
can be repeated. This is like an instantaneous automatic optimizer. In
this way, a simultaneous game with two players even if repeated infinite
times, is played instantaneously (no time consuming). This approach
determines the probabilities from the mixed strategies and can be
proved that this is the true limit of the equivalent game in discrete-time. 

The simultaneous game, which can be repeated infinite times, at the
instant that one (or both) player will exercise the option (that is, at τ), is
showed in strategic form in figure 4, together with the option exercise
probabilities.

17. When communication is allowed - as suggested in Joaquin and Buttler (2000) - there
is the alternative of a bargain-game (sharing the surplus L – F) with agreement for only one
firm to become leader avoiding the simultaneous investment “mistake”. However, in many
situations this kind of agreement is illegal or contrary to accepted convention.
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FIGURE 4.— Simultaneous Game at τ

The firm 1 payoff, V1 (not yet optimized) is given by:

(21)( ) ( ) ( )( )1 1 2 1 2 1 2 1 2 11 1 1 1V p p S p p L p p F p p V= + − + − + − −

The last term means that in case of repetition we get the payoff V1 due
to the definition of τ: when this game is played (at τ, with infinite
rounds) is certain that some player (or both) will exercise the option.
Alternatively, an equivalent (perhaps more intuitive) way to obtain V1

is given below:

( ) ( )[ ] ( )( )1 1 2 1 2 1 2 1 21 1 1 1 1V p p S p p L p p F p p⎡= + − + − ⋅ + − −⎣

( ) ( )2 2
1 21 1p p ⎤+ − − + ⋅⋅ ⋅⎦

The summing between the first brackets is the expected payoff of a
round in case of definition (investment of one or two players). The
second summing between brackets multiplies the expected payoff,
considering the case of definition in the first round (multiplying by one),
in the second round [multiplying by (1 – p1) (1 – p2)], and etc., until
infinite. The summation in the second brackets is just the (convergent)
infinite sum of a geometric progression, so that it is easily calculated.
Hence, the equation for the (non-optimized) payoff from the
simultaneous game for the firm i, Vi, i = 1 or 2, is:

(22)
( ) ( )
( )( )
1 1

1 1 1
i j i j i j

i
i j

p p S p p L p p F
V

p p

+ − + −
=

− − −⎡ ⎤⎣ ⎦



240 Multinational Finance Journal

FIGURE 5.— Geometric Interpretation of Mixed Strategy Exercise
Probability

Next, players need to set the optimal probability to exercise the option,
that is, the probability that maximizes the expected payoff Vi. The first
order condition for this optimization problem for the firm 1 is  MV1 / Mp1

= 0, given that the rival is planning to exercise the option with
probability p2. The second order condition indicates a maximization
problem. Note also that, due to the symmetry of the problem, the
optimal probabilities must be equal. That is, p1 = p2 = p*. This permits
a further simplification. Using the first order condition and the
symmetry insight, after some algebra we get the following simple
equation for the optimal probability of investing in mixed strategies:

(23)*
L F

p
L S

−=
−

figure 5 gives a geometric interpretation for the mixed strategy optimal
probability of exercise p*.

In the figure 5 is easy to see that when L = F and L > S, it results in
p* = 0. When L tends to both F and S, it results in the limit p* = 1. In
the mixed strategy equilibrium for this symmetrical game, the
probability p* can be interpreted as equal the ratio of the possible
benefit from preemption (L – F) to the range of total possible variation
(L – S). Note that L – S = [(L – F) + (F – S)].
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Let us calculate the probability of only one of the firms to exercise
the option and the probability of simultaneous exercise in this game. For
that, by looking again the figure 4 with the simultaneous game in
strategic-form and, by using a similar reasoning used to the payoff, it is
possible to write that the probability pr(one = i) that only the firm i is
investing at τ is given by:

 ( ) ( ) ( )( ) ( )( ) ( )( ) ( )1 1 1pr one i p p p p pr one iτ τ τ τ= = − + − ⋅ − ⋅ =

So, the probability of pr(one = i) is given by:

(24)( ) ( )
( )

1
2

p
pr one i

p

τ
τ

−= =
−

Of course, the probability pr(one = j) of only the firm j investing in this
simultaneous-game at τ is exactly the same due to the symmetry. Now,
the probability of simultaneous exercise (or probability of “mistake”, if
Y < YF), denoted by pr(two), using a similar reasoning is given by:

(25)( ) ( )
( )2

p
pr two

p

τ
τ

=
−

Note that the three probabilities sum one, that is, p(one = i) + pr(one =
j) + pr(two) = 1. This is because there is no possibility of non-exercise
in this simultaneous-game due to the definition of τ. We can use the
previous optimal value that we found for the probability p(τ) (eq.23) to
estimate the probabilities of each firm investing and the probability of
simultaneous exercise. Example, at YL we known that L = F and L > S.
So, p(τ) = 0. In this case pr(two) = 0 and pr(one = i) = pr(one = j) = 1/2.
Note also that the pr(two) is consistent in the limits when Y tends to YF

or YL, respectively 1 and 0.
Therefore, when the market begins with Y < YL there are 50%

chances each to became leader and zero probability of “mistake” when
Y reach YL. This conclusion from Dixit and Pindyck with trivial mixed
strategies outcome is correct only in this case.

IV. Asymmetrical Duopoly under Uncertainty

The asymmetrical duopoly under uncertainty model is a more realistic
hypothesis in most industries. Here firms are non-homogenous because,
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for the same investment, one firm has lower operational cost than the
other. This means that one firm has competitive advantage over the
rival.

Here is summarized and extended the known model of Joaquin and
Buttler (2000). Following them, the paper assumes a linear inverse
demand function, with quantities determined by a Cournot competition.
Both firms are based in the same country and both are considering the
investment in the same foreign country. The demand function is
deterministic and constant over time. However, the exchange rate X(t)
is uncertain and evolves as a stochastic process modeled as a GBM.
Mathematically it is equivalent to consider a multiplicative stochastic
demand shock Y(t). The deterministic linear demand function is:

 with a > 0, b > 0, and a > b QT (26),TP a bQ= −

Where P(QT) is the price of the product in foreign currency, which is
function of the total output in this market QT. For the price in domestic
currency, just multiply by the exchange rate X(t).

In case of investment option exercise, there exists a variable
operational cost ci for firm i where i can be “l” or “h”, for low-cost and
high-cost firms, respectively. The competitive advantage of low-cost
firm is expressed by cl < ch . The function profit flow πi(Qi) for the firm
i in foreign currency is:

(27)( ) [ ]Ti i i iQ Q a bQ cπ = − −

Using contingent claims, and with the dividend yield δ > 0 being
interpreted as a foreign currency yield, the present value of a perpetual
profit flow is given by dividing the equation 27 by δ.

The optimal monopolistic profit flow and the equilibrium profit
flows from the Cournot duopoly are:

(28)
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i
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a c

b
π −
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(29)
( ) ( )2 2

12 2
    

9 9
h h l

i h

a c c a c c

b b
π π− + − +

= =



243Continuous-Time Option Games

We'll put directly the results,18 which can be obtained with either of the
two methods presented before, being here a “new market model” (which
ease the calculus). The follower value for the high-cost firm Fh(X),
exercising the option as follower at the threshold , is given by the*

FhX
equation below (for the less natural low-cost firm as follower, just
switch “l” and “h”).

(30)( )
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Where  β1 is the positive ( > 1) root of the quadratic equation 0.5  σ2   β2

+ (r – δ – 0.5 σ2) β – r = 0. The format of the follower value equation
when the exchange rate is below the threshold has natural interpretation.
The first term, between brackets, is the NPV from the option exercise
at . The multiplicative second term is the expected value of the*

FhX
stochastic discounted factor (recall eq.9), from a random time of the
follower exercise . The second line in the equation 30 is also the*

FhT
value of simultaneous exercise for any X (for , it is the value*

FhX X<
of a mistake).

The threshold for the high-cost firm as follower is:

(31)
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The leader value for the low-cost firm Ll (again, for the less probable
high-cost firm as leader, just switch “l” and “h”), if , is given*

FhX X<
by the equation below.

(32)
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The format of this equation also permits an intuitive explanation. The
first term of the right side is the monopoly profit in perpetuity of the

18. For the intermediate steps and additional discussions, see:
http://www.puc-rio.br/marco.ind/duopoly3.html
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FIGURE 6.— Leader, Follower, and Simultaneous Values for
Low-Cost and High-Cost Firms

leader firm. The middle term is the expected present value of the
competitive losses (the value between brackets is negative), which will
occur at the follower entry (decreasing the monopoly profit in
perpetuity). The last term is the investment required to become leader.
If , the leader value is equal to the value of simultaneous*

FhX X≥
investment. 

In order to get the leader value, the paper found the same constant
Ai used in Joaquin and Buttler (eq.16.6e) but in a more heuristic format
that permits a quick extension to other demand curves, showed below:

(33)
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We can identify between brackets the difference of profit flows format:
the profit flow from duopoly less the profit flow from monopoly. In this
way it is easy to see that this constant is negative: the profit flow from
the duopoly phase is lower than the profit flow from the monopolistic
phase. The negative value of the constant means that the leader value
function is concave, i.e., the effect of the follower entering is to
decrease the leader value, as expected by the intuition.
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FIGURE 7.— The Leader Threshold Determined by the Preemption
Menace

Figure 6 shows the leader, follower, and simultaneous investment
values for both low-cost and high-cost firms, with the same numerical
inputs from the example used by Joaquin and Buttler.

How to estimate the leader threshold? This issue needs some
additional considerations when compared with the symmetric case of
section III. Without the preemption menace, the low-cost firm will
invest optimally at the monopoly threshold XMl. However, due to the
preemption menace, firms cannot wait so far to invest. If one firm wait
until X = XM, in some cases the other firm can invest at XM – ε, etc. This
process stops when one firm has no more incentive to preempt the rival.
Figure 7 shows this issue. It is a zoom from previous figure 6 showing
only leader and follower values. Firm l has incentive to become leader
if Ll$Fl (point A in figure 7) but it is not necessary to invest at this point
because the low-cost firm knows that firm high-cost has incentive to
become leader only if Lh$Fh. So, low-cost firm strategy to become
leader is to invest at XLh, when Lh = Fh and XLh < XFh or, more precisely,
at an infinitesimal value before, at XLl = XLh – ε, where ε > 0 is an
infinitesimal value. This case assumes that XLh exists.

In this case XLl is determined by the high cost firm preemption
menace. In other cases, depending mainly on the difference between the
operational costs cl and ch, the competitive advantage could be higher
disappearing the menace of preemption before the optimal monopolistic
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FIGURE 8.— There Is No Danger of Preemption by High-Cost Firm
Fh > Lh œ X

exercise at X = XMl. In this case the competitive advantage is so high that
the low-cost firm ignores the competition by investing at the
monopolistic threshold XMl - this is an open-loop strategy. As example,
by rising ch (from $21 used in Joaquin and Buttler to $23.5) the values
of leader and follower for high-cost firm shows that this firm will never
want to be the leader. See figure 8.

In the figure 8 the follower curve is always above the leader value
for the high-cost firm. In this case is always better for the high-cost firm
to be the follower, waiting until the exchange rate reach the level XFh =
5.44 in this example. For the rival low-cost firm, this means that there
is no preemption menace so that the low-cost firm can ignore the
competition by investing at the monopolistic threshold XMl. Hence the
leader threshold is the minimum between its monopolistic threshold and
the other firm minimum level with incentive to become a leader. This
is roughly the “result 3” from the Joaquin and Buttler’s paper. So, XLl =
Min[XMl , XLh – ε].

Is there incentive for collusion? For “new market model” like this
case, collusion is never Nash-equilibrium (Huisman and Kort, 1999).
With asymmetric firms (competitive advantage), this conclusion is
strengthened.

Now, imagine that the initial state of the exchange rate is so
favorable that both firms have incentive to become leader because exists
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FIGURE 9.— Preemption Region for the High-Cost Firm: From
1.03 to ~ 2.94

an exchange rate region where L > F for both firms. However, both
firms will be worse in case of simultaneous exercise of the option to
invest because the value of simultaneous investment is even lower than
the follower value, namely S < F for both firms. It is obvious that,
without communication between the firms, there is a positive
probability of “mistake” - simultaneous investment getting a value lower
than the follower's one. Figure 9 shows this region. 

Note that if the high-cost firm has incentives to become leader - the
case showed in the figure, the same happen with the low-cost firm.
However, we know that the vice-versa is not necessarily valid. Let us
denote the region showed in figure 9 as preemption region for the
high-cost firm. The existence of this region depends on the parameters,
specially the difference between the costs, that is, the competitive
advantage value. In the base case of Joaquin and Buttler this region
exists. This means that the low-cost firm in this region suffers the risk
of obtaining the simultaneous exercise value (see the chart) instead the
“logical” or “natural” leader value when investing. 

This risk must be considered when analyzing this game. The
high-cost firm threat is credible, because if the high-cost firm enters
first, the best for the low-cost firm is to resign with the follower role,
unless X $ XFh. In reality, high-cost firm as leader and the low-cost firm
as follower is also a Perfect Nash equilibrium, even being a less
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intuitive strategic outcome. It is necessary to analyze the mixed strategy
probabilities in order to evaluate the probability (or risk) of “mistake”
and the probability of the less intuitive high-cost firm emerging as the
leader.  

Define XPh as the preemption upper bound from the preemption
region for the high-cost firm, showed in figure 9 as approximately equal
to 2.94. This is the second intersection of Lh and Fh curves. For values
of X = Xph – ε, there is still a small incentive Lh – Fh > 0 for the high-cost
firm to become leader. This incentive ends when X reaches XPh. This
upper bound will be used soon in the mixed strategy proposition. The
lower bound of the region showed in figure 9 - about 1.03, is the leader
threshold (equal for both firms). As in Huisman and Kort model, the
strategically optimal option exercise probability is proportional to the
difference between the rival L and F values and decreases if the
difference between the rival F and S increases. As is known in game
theoretic literature, mixed strategies for asymmetric games can look
counterintuitive at the first sight. The point is that the mixed strategies
probabilities are optimal probabilities (in the sense of maximizing the
player payoff), not player strengths or abilities or preferences. In this
sense, high-cost firm can be more aggressive to exercise the option than
low-cost firms.

In order to determine the mixed strategies probabilities, the paper
uses partially the Theorem 8.1 from the Huisman's textbook (2001,
p.204). He analyzes the asymmetric duopoly case (chapter 8), but it is
a little bit different from our case because the asymmetry there occurs
with different investments, whereas here the investments are the same
and the asymmetry results from the operational costs. 

A. Proposition 2: Mixed Strategy in Asymmetric Duopoly. 

(a) Consider the parameters scenario so that there is a non-empty
preemption region for the high-cost firm defined by the region [XLh,
XPh]. In this region the probabilities of exercise pl(X) and ph(X) for the
low-cost and high-cost firms are, respectively:19

(34)      h h l l
l h

h h l l

L F L F
P P

L S L S

− −= =
− −

19. Readers of the last section on symmetrical duopoly model will recognize this format
and know how to find out results like that using the concept of “atoms” and the maximization
process (MVl / Mpl = 0 and (MVh / Mph = 0). But note that the probabilities pl and ph are functions
of the opponent payoffs not the player’s payoffs itself.
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Now consider the following possible cases of initial value for the
stochastic exchange rate X(t = 0):

(a.1) If the current exchange rate X(0) belongs to the preemption
region for the high-cost firm, [XLh, XPh], then with probability

(35)( ) ( )1
low-cost l h

l h l h

P P
pr

P P PP

−=
+ −

low-cost firm invests immediately and high-cost firm invests when X
reaches XFh. With probability

(36)( ) ( )1
high-cost h l

l h l h

P P
pr

P P PP

−=
+ −

high-cost firm invests immediately and low-cost firm invests when X
reach XFl. And, with probability

(37)( )both firms l h

l h l h

PP
pr

P P PP
=

+ −

both high-cost firm and low-cost firm invest immediately, the called
probability of mistake.

(a.2) If the current exchange rate X(0) is lower than XLh (that is, at
the left of the preemption region for the high-cost firm) and lower than
XMl, then with probability one low-cost firm invests when X(t) reach the
value XLl = minimum(XLh – ε, XMl) and high-cost firm invests when X(t)
reach XFh. 

(a.3) If the current exchange rate X(0) is lower than XLh and higher
than XMl, then with probability one low-cost firm invests immediately
and high-cost firm invests when X(t) reach XFh.

(a.4) If the current exchange rate X(0) is higher than XPh (that is, at
the right of the preemption region for the high-cost firm) and lower than
XFh, then with probability one low-cost firm invests immediately and
high-cost firm invests when X reach XFh. 

(a.5) If the current exchange rate X(0) is higher or equal than XFh -
that is, a region where is optimal for both firms to invest, then with
probability one both firms invest immediately.

(b) If the preemption region for the high-cost firm is an empty set
(there is no X that L $ F for high-cost firm), then:

Low-cost firm will invest with probability one at XMl as leader and
high-cost firm will invest with probability one only at XFh, as follower.
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FIGURE 10.— The Main Perfect Nash Equilibrium in Asymmetric
Duopoly

Proof: By using the concept of “atoms” we can follow the same steps
presented at section III for the simultaneous game at τ (when one or two
firms invest with probability 1), proving (a.1) with a maximization
process to get the equations 34, 35, 36 and 37, so that there are no
unilateral incentives to deviate. Items (a.2), (a.3) and (a.4) follow
because the low-cost firm is better off exercising the option than waiting
if X(t) > XLl, and it has no incentive to deviate from the option exercise
strategy when X(t) = XLl, whereas for the high-cost firm “wait and see”
is better than the option exercise for X(t) < XFh . Item (a.5) follows
because the option exercise - even simultaneously, is better than wait
and see for both firms. Finally, item (b) results from the fact that in this
case never is optimal for high-cost to enter as leader, so that there is no
menace of preemption and low-cost firm maximizes its profit by
entering only at the monopolistic threshold value XMl.

Figure 10 shows the more intuitive or main Perfect Nash equilibrium
with low-cost firm entering as leader and high-cost firm as follower.

In the figure 10 appears a new value function: the option to become
leader. This value function is calculated with the leader threshold XLl,
by using the expected value of stochastic discount factor from the
random time to X(t) reaches XLl, times the leader value function for the
low-cost firm.
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FIGURE 11.— The Secondary Perfect-Nash Equilibrium in Pure
Strategies

Figure 11 shows the less intuitive or secondary Perfect Nash
equilibrium, with the high-cost firm being the leader and the low-cost
firm being the follower. 

Recall that if the game starts with the exchange rate X < XL, the
occurrence probability for this equilibrium is zero. However this
probability can be strictly positive if X starts at the called preemption
region for the high-cost firm.

Recall also that, depending on the parameters, there exists the
possibility of mistake - simultaneous investment when the optimal for
both firms is only one firm active in the market. If this mistake happens
(has positive probability if the initial exchange rate is in the preemption
region for the high-cost firm), deviation is not feasible because the
investment is irreversible.

V. Conclusion

In this paper was presented a short bibliographical development of
option games and the basic related concepts. The paper discussed
negative externality models of symmetric and asymmetric duopoly
under uncertainty, being the former of great conceptual relevance and
the latter of great practical appeal. Concepts like preemption,
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non-binding collusion, and mixed strategies were discussed for both
symmetric and asymmetric cases. The reader saw that in many situations
exists a strictly positive probability of “mistake” - simultaneous option
exercise when the best for both firms is only one firm investing.
Contrary to popular belief, this positive probability of mistake can occur
even for asymmetric duopoly under uncertainty. 

The major contribution of this paper is to formalize two equivalent
ways to calculate the key elements to set the stopping time equilibrium
strategies, i.e., the values and thresholds for the leader and the follower,
in real options games where the players play simple threshold strategies.
In certain problems one approach can be preferable than the other -
creating an option to solve the option games.

Accepted by:  Prof. L. Trigeorgis, Guest Editor, April 2007
 Prof. P. Theodossiou, Editor-in-Chief, April 2007
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