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An Admissible Macro-Finance Model of the
US Treasury Market

Peter Spencer*
University of York, U.K.

This paper develops a macro-finance model of the yield curve and uses this 
to explain the behavior of the US Treasury market. Unlike previous 
macro-finance models which assume a homoscedastic error process and suppose 
that the one-period return is directly observable, I develop a general affine 
model which relaxes these assumptions. My empirical specification uses a single 
conditioning factor and is thus the macro-finance analogue of the EA1(N) 
specification of the mainstream finance literature. This model provides a 
decisive rejection of the standard EA0(N) macro-finance specification. The 
resulting specification provides a flexible 10-factor explanation of the behavior 
of the US yield curve, keying it in to the behavior of the macroeconomy. (JEL: 
C13, C32, E30, E44, E52)

I. Introduction

Macro-finance models use both observable macroeconomic and 
unobservable latent variables to model the macroeconomy and bond 
market, in contrast to the conventional approach which only uses latent 
variables. Like the conventional approach, it describes yields as linear 
functions of these driving variables in a way that removes arbitrage 
opportunities. This new approach allows the parameters of the model to 
be informed by both macroeconomic and yield data. It generates models 
that are easier to interpret and understand since they are based upon
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standard macroeconomic structures. However, the current
macro-finance specification suffers from a number of drawbacks
compared to the conventional one. In particular it assumes that the
volatility structure is constant, while the conventional literature finds
that square root volatility is significant. Also, macro-finance modelers
assume that the interest rate that is relevant for the yield structure can
be identified and observed without error, while the conventional finance
model estimates this as a linear combination of the latent factors. In this
paper I develop a model of the US economy and Treasury bond market
which relaxes these assumptions, bridging the gap between the
macro-finance and conventional models of the term structure.

Since these various models are linear in variables, this means that if
there are N underlying driving variables, they can be represented by N
bond yields or macroeconomic variables or both. For example the
conventional ‘yield factor’ approach just uses linear combinations of N
bond yields as factors assuming that these are observed without
measurement error. It has been extensively used for testing affine
specifications (Brown and Schaefer (1994), Duffie and Kan (1996), Dai
and Singleton (2002)). Macro-finance models on the other hand are
based on the ‘central bank model’ (CBM) developed by Svensson
(1999); Smets (1999) and others. This represents the behavior of the
macroeconomy in terms of three variables: inflation (πt), the gap
between output and its inflation-neutral level (gt) and a policy interest
rate like the Fed Funds rate (rt). This provides a basic dynamic
description of an economy in which the central bank implicitly targets
inflation using a ‘Taylor rule’, which determines the policy rate in terms
of inflation and the output gap. Early macro-finance papers (Ang and
Piazzesi (2003)) revealed that the CBM provides a good description of
the behavior of short term yields but that a latent variable known as the
‘financial factor’ has to be added to explain long term yields.
Consequently, my model employs the three macroeconomic variables
of the CBM with two sets of lags, together with a single latent variable
representing the financial factor. This gives a total of N = 10 state
variables. The financial factor is backed out from the yield model as a
linear combination of the 9 observable variables and the 15 year yield.

I depart from the macro-finance literature in assuming that both the
mean values and variances of the system are linear in the financial
factor. This means that the yield curve is determined by the square root
volatility model of Cox et al (1985). To handle quarterly economic data
I employ the discrete time version of this model developed by Sun
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(1992). In order to ensure that the variance structure remains
non-negative, I also employ ‘admissibility’ restrictions similar to those
proposed for the continuous time model by Dai and Singleton (2002).
This is the analogue of the (EA1) yield factor model developed by Dai
and Singleton (2002) and Dai and Singleton (2002), which as they say:
‘builds upon a branch of the finance literature that posits a short-rate
process with a single stochastic central tendency and volatility’. Despite
the extensive use of stochastic volatility models in theoretical and
empirical finance papers and the evidence of heteroscedasticity in
macroeconomic and asset price data this is the first macro-finance
model with this feature. Finally I follow the conventional finance
approach in assuming that the one-period yield or ‘spot rate’ relevant to
the term structure  is a linear combination of the state variables( )1,ty
and not necessarily equal to the ‘policy’ interest rate (rt) generated by
the macro model. These innovations significantly improve the
explanatory power of the macro-finance model and provide further
insights into the working of the US economy and bond market.

The paper is set out along the following lines. The next section
develops a Vector Auto-Regression (VAR) model of the economy and
section III shows how this can be used to derive an affine term structure
under the no-arbitrage assumption. Section IV then compares the
performance of my models against the standard macro-finance model
and discusses the implications for the economy and bond market.
Section V offers a brief conclusion.

II.  The Macroeconomic Framework

My model represents the behavior of the macroeconomy in terms of the
annual CPI inflation rate (πt), output gap (gt) and the 3 month Treasury
Bill rate (rt). These form the vector zt = {πt, gt, rt} of macroeconomic
variables. This T-bill rate is chosen as the ‘policy rate’ in preference to
alternatives like the Federal Funds and Euro-dollar rates since it has a
3 month maturity and is default free, likely to make it more relevant to
a quarterly model of the Treasury market. In addition,  represents the1,tx
financial factor. This is assumed to follow the first order autoregressive
process:
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(1)1, 1 1, 1, 1t t tx x wθ ξ+ += + +

where  is an equation residual or error defined in the next1, 1tw +

subsection and zt is driven by the L – th order difference system:

(2)1 0 1, 1 2, 11

L

t t l t l tl
z x z wκ φ φ+ + − +=

= + + +∑

where  is an error vector. These are decomposed into components2,tw
that are related to  and an orthogonal component ηt:1,tw

(3)2, 1 1, 1 1t t tw Hw Gη+ + += +

This system is consolidated by defining  { }1, , ;t t t tx x z w′′= =
 and combining (1) and (2), to give an L–th{ } { }1, 2, 1,, ; , ;t t t t tw w wυ η′ ′′ ′=

order difference system for n stochastic variables:1

(4)1 1 1ˆt t tx x w+ + += +

1 11
where: ˆ

L

t l t ll
x K x+ + −=

= + Γ∑
and:

1,31 0
; ; ;t tw K

H G

θ
υ

κ
⎡ ⎤ ⎡ ⎤= Γ = Γ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1,31,3
1

3,10 1

0 00
; ; 2, ..., .

0l
l

l L
ξ ⎡ ⎤⎡ ⎤Γ = Γ = =⎢ ⎥⎢ ⎥Φ ΦΦ⎣ ⎦ ⎣ ⎦

In this paper, a hat over any variable like  indicates its conditional1ˆtx +

expectation in the previous period. The yield model employs the state
space form, obtained by arranging this as a first order difference system
describing the dynamics of the state vector (see appendix 1):

1. In this paper, Diag{y} represents a matrix with the vector y in the diagonal and zeros
elsewhere. 0a is the (a × 1) zero vector; 1a is the (a × 1) summation vector; 0a,b the (a × b)
zero matrix; Ia the a2 identity matrix. and Ia,b an a2 matrix with ones in the first b elements of
the leading diagonal and zeros elsewhere.
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(5)1t t tX W−= Θ +ΦΧ +

where  is the state vector,{ }1, , , ...,t t t t LX x z z −
′′ ′= { }1,. ,0t t N nW C w −

′′=
and Θ, Φ & C are defined in appendix 1. Xt has dimension N = 1+3L =
10. Similarly, writing  and partitioning Wt, Θ, Φ, C { }1, 2,,t t tX x X ′′=
conformably (see appendix 1), (5) becomes:

(6)
1, 1 1, 1, 11

2, 1 2, 2, 12 21 22

0t t tN

t t t

x x w

x x W

θ ξ+ +−

+ +

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Θ Φ Φ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

The macroeconomic data were provided by Datastream and are shown
in figure 1. πt is the annual CPI inflation rate and rt the 3 month
Treasury Bill rate. The output gap series gt is the quarterly OECD
measure, derived from a Hodrick-Prescott filter. The yield data were
taken from McCulloch and Kwon (1991), updated by the New York
Federal Reserve Bank.2 These have been extensively used in the
empirical literature on the yield curve. The 15 year yield (the longest for
which a continuous series is available) is used in equation (16) below
to identify the financial factor. The 1,2,3,5,7, and 10 year yields are
modelled as dependent variables. The macroeconomic data dictated a
quarterly time frame (1961Q4-2004Q1, a total of 170 periods). The
quarterly yield data are shown in figure 2. The 15 year yield is shown
at the back of the figure, while the shorter maturity yields are shown at
the front.

A. The Stochastic Structure

The standard macro-finance model assumes that the volatility structure
is homoscedastic and Gaussian: . However,( )1 0 ,t NW N+ Ω∼
conventional finance models usually assume that volatility is stochastic.
In the affine model developed by Duffie and Kan (1996) and Dai and
Singleton (2002), conditional heteroscedasticity in the errors is driven
by square root processes in the state variables. In the ‘admissible’
version of this specification developed by Dai and Singleton (2002),

2. I am grateful to Tony Rodrigues of the New York Fed for supplying a copy of this
yield dataset.
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FIGURE 1.— Macroeconomic variables

Note: CPI Inflation and 3 month T-bill interest rate are from Datastream. Output gap is from
OECD.

regularity or admissibility conditions are imposed to ensure that the
variance structure remains non-negative definite. Variations in the risk
premia depend entirely upon variations in volatility in these models. In
the ‘Essentially Affine’ model of Duffee (2002) state variables can
affect risk premia through the price of risk as well as through volatility.
In the notation of Dai and Singleton (2002) an admissible essentially
affine model with N state variables and m independent square root
factors conditioning volatility is classed as EAm (N). Thus the standard
macrofinance model (which is ‘essentially affine’ and homoscedastic)
is denoted EA0(N). There may in general be several stochastic volatility
terms, but in this paper I assume that m = 1 : stochastic volatility is
conditioned by a single variable  that follows a discrete time process1,tx
represented by (1) with:

(7)1, 1 1, 1 10 11 1, ;t t tw u xδ δ+ += +

where u1,t+1 is a standardized normal i.i.d. error term. Setting δ11 = 0; δ10

> 0 gives my Vasicek (1977) equivalent EA0 model. Setting δ11 > 0; δ10 
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FIGURE 2.— US Treasury discount yields

Note: US Treasury discount bond equivalent yield data compliled by McCulloch and Kwon
(1990) updated by the NY Fed.

= 0 gives the discrete time Cox et al (1985) equivalent specification of
Sun (1992) and Campbell et al (1996). In this model, volatility
disappears as x1,t falls to zero and with θ > 0, mean reversion helps to
ensure that . This means that the probability of a negative1, 1 0tx + >
value of variance term is very small and goes to zero in the continuous
time limit. If δ10 … 0 the model generalizes to that of Duffie and Kan
(1996). In this model volatility disappears as δ10 +δ11 x1 falls to zero and
x1 falls to xmin = (–) δ10/δ11. Provided that θ > (1 – ξ)xmin then mean
reversion means that the probability of a negative value of variance term
(i.e. the probability that x1 falls below xmin) is very small. This is the
basic specification of my EA1 model.

In EA1, this financial factor also conditions the volatility of the other
variables. Substituting  into (3), where u2,t is a vector of2,t t ts uη =
standard normal normal i.i.d. error terms:

(8)2, 1 1, 1 2, 1t t t tw Hw Gs u+ + += +
where:

[ ]2, 1 1, 1 30 ;t tE u w+ + =

0
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( ) ( )
1 1

2 2
20 21 1, 40 41 1,, ..., .t t ts Diag x xδ δ δ δ

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭

and δi0, δi1 $ 0, i = 2, 3, 4 and the components of  are standardized2, 1tu +

normal variables. It follows from (4) that:

(9)( ) ( )1 10 , ; 0 , ;t n t t n tN w Nυ + + ′Δ ΓΔ Γ∼ ∼

where: Δt = Δ0 + Δ1 x1,t; Δj = Diag{δ1j, ..., δ4j}; j = 0,1. The stochastic
structure for (6) is described in appendix 1. To make the EA1 model
admissible in the sense of Dai and Singleton (2002), the estimation
program checks that:

(10)0 10 1 11/ / , 2,3,4i i iδ δ δ δ> =

ensuring that δi0 + δi1 xmin > 0. This keeps the elements of st and hence
the variance structure non-negative. One implication of this restriction
is that δi1; i = 2, 3, 4 must go to zero with δ11 making the structure
entirely homoscedastic.

III.  The Bond Pricing Framework

The aim of this paper is to use this framework to model the
macroeconomy and the yield curve jointly. The macro model is defined
under the state probability measure P, but assets are priced under the
risk neutral measure Q. This adjusts the state probabilities in such a way
that all assets have the same expected return.

A. The Pricing Kernel

Discount bond prices are obtained using the pricing kernel (Campbell
et al (1996), Cochrane (2002)):

{ } [ ], 1, 1, 1exp Q
t t t tP y E Pτ τ − += −

(11)[ ]1 1, 1 ; 1, ..., .t t tE M P Mτ τ+ − += =
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where Pτ,t is the t-period price and  denotes the conditionalQ
tE

expectation under the risk neutral measure Q.  is the nominal1tM +

Stochastic Discount Factor (SDF) which changes the probability
measure from P to Q and applies the time discount using: . This is1,ty
known as the ‘spot rate’: the one-period yield relevant to the term
structure and is assumed to be a linear combination of the state
variables:

(12)1, 1 1, 2 2, .t t ty j x J X′= +

where J2 is a 9 × 1 vector. Following the conventional finance approach,
these can consist of 9 freely estimated weights. In the standard
macrofinance model these weights are restricted to pick out the current
value of the policy interest rate rt from the state vector

 by setting the third element of J2 to unity and the( )1, 2 2,t t ty r J X′= =
other weights to zero. Tests of this restriction are reported in the next
section.

The logarithm of the SDF is ,( )1 1, 1, 1, 1 2, 2, 1t t t t t t tm y wω λ λ υ+ + +′= − + + +
where  is a scalar and  a 3 × 1 vector of coefficients related to1,tλ 2,tλ
the prices of risk associated with shocks to . For the yield model to1tz +

be affine these coefficients must also be affine in the state variables. So
for example, the variable  shows the price of risk associated with the1,tλ
financial factor, which plays an important role in this analysis and is
specified as:

(13)1, 10 11 1, .t txλ λ λ= +

If this is zero, then a portfolio that is constructed so that it is only
exposed to shocks in  has a zero risk premium and is expected to1,tx
earn the spot rate. If it is constant , then variations in this risk1, 10tλ λ=
premium depend only upon variations in volatility, such as those
induced by  in EA1. This parameter plays the key role in that model.1,tx
If λ11 is also non-zero then this factor can influence the risk premia
thorough variations in the price of risk, even if volatility is fixed as in
EA0, so λ11 plays the key role in that model. Appendix 2 shows how the
prices of risk associated with the other variables are adjusted, following
Duffee (2002).
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B. Affine Yield Models

Appendix 2 shows that these specifications generate an exponential
affine bond price (affine yield) model:

(14)[ ], exp ; 1, ..., .t tP X Mτ τ τγ τ′= − −Ψ =

where Ψτ is partitioned conformably with (6) as .{ }1, 2,,τ τ τψ ′′Ψ = Ψ
Taking logs, reversing sign and dividing by maturity τ gives the discount
yield:

(15), , /t ty pτ τ τ= −

,t ta X eτ τ τβ ′= + +

,0 1, , 1 ,1

L

t l t l tl
a x z eτ τ τ τβ β + −=

′ ′= + + +∑

where: aτ = γτ / τ; βτ = Ψτ / τ; and eτ,t is an i.i.d. error. The slope
coefficients of the yield system βτ are known as ‘factor loadings.’ The
standard assumption is that eτ,t represents measurement error which is
homoscedastic and orthogonal to the errors Wt in the macroeconomic
system (5).

Following the yield factor approach, I assume that the 15 year (60
quarter) maturity yield  is measured without error:60,ty 60, 60ty a= +

. This allows the financial factor to be backed60,0 1, 60, 11

L

t l t ll
x zβ β + −=

′+∑
out from the system as:

(16)( )1
1, 60,0 60, 60 60, 11

.
L

t t l t ll
x y a zβ β−

+ −=
′= − −∑

Stacking (15) for the 1,2,3,5, 7 and 10 year maturities that are modelled
gives a multivariate system for :{ }4, 8, 12, 20, 28, 40,, , , , , ,t t t t t t ty y y y y y y=

(17)0 1, 11
;

L

t t l t l tl
y a x z eβ β + −=

′= + + +∑

( ) { }1 2 60, ; , , ..., .te N P P Diag ρ ρ ρ=∼
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This defines the yields in terms of the current state vector. The
conditional expectation for the next period can be written using (4) as:

(18)1 1 1ˆt t ty y u+ + += +

1 1 22
where: ˆ ˆ

L

t t l t ll
y a B x zβ+ + + −=

′= + +∑

[ ]1 1 1 0 1; .t t tu B e Bυ β β+ + + ′= Γ + =

Since the macro errors are heteroscedastic in EA1, so is ut:

(19)( )( )1 0 1 1,0 ,t k tu N B x+ ′ ′Γ Δ + Δ Γ Β∼

C. Yield Model Coefficients

The coefficients of (14) are derived in appendix 2. These coefficient
systems are recursive in maturity. They are also recursive in the sense
that  does not depend upon  (or ). This sub-structure is2,τΨ 1, 1τψ − 1τγ −

standard and common to both models, as is the recursion for the
intercept term. The only difference between the EA0 and EA1 models is
found in the two recursion relationships for the first slope coefficient.
These are encompassed by the model:

( )1, 1 1, 1 2, 1 21 2, 1 1 2, 1

1
2

Q Qjτ τ τ τ τψ ξ ψ ψ ψ− − − −′ ′= + + Φ − Σ Φ

(20)( )2

11 1, 1 2, 1 21

1
1, ..., .

2
C Mτ τδ ψ ψ τ− −′− + =

{ }{ }22 22 2 4 4where: ; , ..., ,0 ; 0,1i i i i i NC D C D Diag iδ δ −′ ′Σ = = =

The EA0 model simplifies this by setting δ11 (and hence G1) to zero:

(21)( )1, 1 1, 1 2, 1 21; 1, ...,60.Q Qjτ τ τψ ξ ψ ψ τ− −′= + + Φ =
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where:  is a 9 × 1 vector in0
10 11 21 21; .Q Q Qξ ξ ξ δ λ= = − Φ = Φ − ϒ ϒ

which the first three elements are free parameters and the rest are zero.
If , then (21) has a unit root and it can be shown that in the0

1 1Q jξ + =
limit the forward rate falls without bound as shown in appendix 2, a
problem originally pointed out by Campbell et al (1996). 

The EA1 model specifies the first coefficient of (20) as: 1QQξ ξ= =
. It retains the quadratic terms, which show the Jensen effects11 10ξ δ λ−

implied by the square root volatility specification. As Campbell et al
(1996) note, this means that and hence the forward rate have well1,τψ
defined asymptotes even if . This makes it more suitable for1

1 1Q jξ + ≥
use with data sets such as the one used in this research that exhibit unit
or near-unit roots.

The other slope coefficients are common to both models and follow
the standard recursion:

(22)( )2, 22 2, 1
Q Jτ τ −
′Ψ = Φ Ψ +

( )( ) ( )( )1

22 22
Q QI I J

τ− ⎛ ⎞′ ′= − Φ − Φ⎜ ⎟
⎝ ⎠

where: . I assume that the roots of this system are22 22 22
QΦ =Φ −Λ

stable under Q, so this has the asymptote:

(23)( )( ) 1
*
2 2, 22lim .QI Jτ τ

−

→∞
′Ψ = Ψ = − Φ

The intercepts follow another standard recursion:

(24)1 2, 1 2 1, 1 2, 1 0 2, 1

1 1
2 2

Q Q
τ τ τ τ τ τ τγ γ γ ψ θ− − − − −′ ′Δ = − = Ψ Θ + − Ψ Σ Ψ −

[ ]210 1, 1 2, 1 21 ; 2, ..., .C Mτ τδ ψ ψ τ− −′+ =

where: . In EA1 there is a restriction10 10 2 2; ;Q Q Fθ θ δ λ= − Θ = Θ −
across  and  because  then1

11 10
Qξ ξ δ λ= − 1

10 10
Qθ θ δ λ= − 10λ
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determines both coefficients given ξ, θ, δ11, δ10. M1 enforces this
restriction. The encompassing model M2 relaxes this restriction and
defines  as a free parameter defined independently of the otherQθ
parameters.

IV.  Model Estimation and Evaluation

The macro (5) and yield (18) models are estimated jointly by maximum
likelihood. Appendix 3 derives the likelihood function and describes the
numerical optimisation procedure. Table 1 provides some basic
summary statistics for these data. Preliminary work designed to estimate
the dimensionality of the model estimated OLS regression equations for
the inflation rate (π), the output gap (g); and the 3-month Treasury bill
discount rate (r) using  as a proxy for . This system was60,ty 1,tx
estimated for L = 2, 3, 4 and 5 lags, with both homoscedastic and
heteroscedastic error structures and the results suggested the use of a
three-lag model. This gives a vector Xt of ten state variables (i.e. 1,tx
and current and two lagged values of zt).

I began by estimating the standard macro-finance model EA0(10).
This is homoscedastic and identifies the one period yield with the T-bill
rate: . With this dynamic structure it has 62 parameters3. The1,t ty r=
empirical version of this model is called M0 and has a loglikelihood
value of 590.7 Model M1 is the empirical version of the equivalent
EA1(10) specification. This uses another 4 parameters (for Δ1(4)) but
saves one degree of freedom by using the restriction λ11 = 0. It has a
loglikelihood value of 640.7. Model M2 relaxes this restriction and thus
encompasses both M0 and M1. It employs a total of 66 parameters and
has a loglikelihood value of 641.3 A standard likelihood ratio test of M0
against M2 gives a χ2(4) value of 101.2, providing a decisive rejection
of that model (the probability of observing this by chance is almost
zero). However, M1 is acceptable (χ2(1) = 1.2; p = 0.027). Finally, I
tested the standard macro-finance restriction: = rt by treating the 101,ty
coefficients of J as parameters to be estimated. This gave a significant
increase in fit in all these models. However, only two of these

3. These are: θ; ξ; κ(3); Φ0(3); Φ1(9); Φ2(9); Φ3(9); G(3); H(3); λ10; λ11; Λ20(3); Λ21(3);
Λ22(9) and Δ0(4).



Multinational Finance Journal14

T
A

B
L

E
 1

.
D

at
a 

Su
m

m
ar

y 
St

at
is

ti
cs

: 
19

61
Q

4-
20

04
Q

1

y 6
0

g
π

y 1
y 4

y 8
y 1

2
y 2

0
y 2

8
y 4

0

M
ea

n
7.

43
83

0.
02

66
4.

43
45

5.
80

09
6.

39
54

6.
63

05
6.

78
49

7.
00

21
7.

14
78

7.
25

13
S

td
.

2.
38

33
2.

33
82

2.
98

41
2.

77
50

2.
81

74
2.

73
55

2.
65

08
2.

54
47

2.
47

90
2.

41
94

S
ke

w
.

1.
81

88
–0

.5
75

1.
41

61
1.

19
07

1.
88

20
1.

86
97

1.
87

93
1.

96
33

1.
96

22
1.

92
15

K
ur

t.
0.

39
45

1.
02

30
1.

51
78

2.
39

86
1.

19
86

1.
06

22
0.

95
05

0.
91

66
0.

75
50

0.
59

29
A

ut
o.

0.
99

71
0.

46
32

0.
99

21
0.

98
15

0.
98

92
0.

99
23

0.
99

44
0.

99
53

0.
99

63
0.

99
69

K
P

S
S

0.
42

98
0.

21
51

0.
33

99
0.

31
00

0.
33

07
0.

33
48

0.
33

99
0.

34
75

0.
35

48
0.

37
61

A
D

F
–2

.0
91

–4
.1

33
–2

.4
11

–2
.1

10
–2

.1
00

–2
.0

63
–2

.0
31

–2
.0

43
–1

.9
91

–1
.9

51

N
ot

e:
  I

nf
la

ti
on

 (π
) a

nd
 in

te
re

st
 ra

te
 a

re
 fr

om
 D

at
as

tr
ea

m
. O

ut
pu

t g
ap

 (g
) i

s 
fr

om
 O

E
C

D
. Y

ie
ld

 d
at

a 
ar

e 
U

S
 T

re
as

ur
y 

di
sc

ou
nt

 b
on

d 
eq

ui
va

le
nt

da
ta

 c
om

pl
il

ed
 b

y 
M

cC
ul

lo
ch

 a
nd

 K
w

on
 (1

99
0)

 u
pd

at
ed

 b
y 

th
e 

N
ew

 Y
or

k 
F

ed
er

al
 R

es
er

ve
 B

an
k.

 M
ea

n 
de

no
te

s 
sa

m
pl

e 
ar

it
hm

et
ic

 m
ea

n 
ex

pr
es

se
d

as
 p

er
ce

nt
ag

e 
p.

a.
; S

td
. s

ta
nd

ar
d 

de
vi

at
io

n 
an

d 
A

ut
o.

 th
e 

fi
rs

t o
rd

er
 q

ua
rt

er
ly

 a
ut

oc
or

re
la

ti
on

 c
oe

ff
ic

ie
nt

. S
ke

w
. &

 K
ur

t. 
ar

e 
st

an
da

rd
 m

ea
su

re
s 

of
sk

ew
ne

ss
 (

th
e 

th
ir

d 
m

om
en

t)
 a

nd
 k

ur
to

si
s 

(t
he

 f
ou

rt
h 

m
om

en
t)

. K
P

 S
S

 is
 th

e 
K

w
ia

to
w

sk
i e

t a
l (

19
92

) 
st

at
is

ti
c 

te
st

in
g 

th
e 

nu
ll

 h
yp

ot
he

si
s 

of
 le

ve
l

st
at

io
na

ri
ty

. T
he

 1
0%

 a
nd

 5
%

 s
ig

ni
fi

ca
nc

e 
le

ve
ls

 a
re

 0
.3

47
 a

nd
 0

.4
63

 r
es

pe
ct

iv
el

y.
 A

D
F

 i
s 

th
e 

A
dj

us
te

d 
D

ic
ke

y-
F

ul
le

r 
st

at
is

ti
c 

te
st

in
g 

th
e 

nu
ll

hy
po

th
es

is
 o

f 
no

n-
st

at
io

na
ri

ty
. T

he
 1

0%
 a

nd
 5

%
 s

ig
ni

fi
ca

nc
e 

le
ve

ls
 a

re
 2

.5
75

 a
nd

 2
.8

77
 r

es
pe

ct
iv

ly
.



15Macro-Finance Model of the US Treasury Market.

T
A

B
L

E
 2

.
C

oe
ff

ic
ie

nt
s 

of
 d

et
er

m
in

at
io

n 
(R

2 ),
 1

96
1Q

4-
20

04
Q

1

x 1
π

g
y 1

y 4
y 8

y 1
2

y 2
0

y 2
8

y 4
0

M
0

0.
96

70
02

0.
94

54
06

0.
93

01
74

0.
90

87
74

0.
94

71
41

0.
95

39
88

0.
96

30
18

0.
97

90
67

0.
98

63
37

0.
99

34
20

M
1

0.
96

69
18

0.
94

55
04

0.
93

03
04

0.
91

03
34

0.
94

66
10

0.
95

43
04

0.
96

27
88

0.
97

92
95

0.
98

66
73

0.
99

35
13

M
3

0.
96

69
53

0.
94

58
65

0.
93

11
98

0.
90

91
53

0.
94

97
98

0.
95

69
78

0.
96

38
45

0.
97

94
41

0.
98

67
98

0.
99

34
90



Multinational Finance Journal16

T
A

B
L

E
 3

.
D

yn
am

ic
 m

od
el

 s
tr

uc
tu

re
s 

(a
sy

m
pt

ot
ic

 t
-v

al
ue

s 
in

 p
ar

en
th

es
es

.)

P
ar

am
et

er
M

0
M

3
P

ar
am

et
er

M
0

M
3

P
ar

am
et

er
M

0
M

3

Φ
0

κ
θ

0.
00

01
9

0.
00

01
9

(1
.2

7)
(1

.0
5)

φ 0
,1

0.
09

89
3

0.
09

34
9

κ 1
–0

.0
00

80
0.

00
01

2
ξ

0.
99

12
3

0.
99

03
0

(4
.0

3)
(4

.0
3)

(1
.4

2)
(1

.4
2)

(5
2.

11
)

(5
0.

00
)

φ 0
,2

0.
04

28
9

0.
04

32
5

κ 2
0.

00
13

1
0.

00
15

1
j 1

0
0.

11
73

0
(3

.1
3)

(3
.3

3)
(7

.0
0)

(6
.6

9)
(–

)
(1

6.
11

)
φ 0

,3
0.

03
97

8
0.

03
97

53
κ 3

0.
00

01
6

0.
00

01
0

j r
1

0.
91

91
2

(6
.7

9)
(7

.0
0)

(7
.0

3)
(7

.4
4)

(–
)

(5
2.

11
)

Φ
1

Φ
2

Φ
2

φ 1
,1

1
1.

15
28

4
1.

15
18

3
φ 2

,1
1

–0
.1

22
78

–0
.1

25
49

φ 3
,1

1
–0

.0
87

65
1

–0
.0

87
63

(1
6.

10
)

(1
6.

88
)

(0
.9

0)
(0

.8
6)

(1
.1

2)
(1

.0
8)

φ 1
,2

1
0.

07
51

0
0.

07
80

0
φ 2

,2
1

0.
01

07
9

0.
01

44
13

φ 3
,2

1
0.

00
69

5
0.

00
97

7
(3

.1
7)

(3
.0

0)
(0

.3
6)

(0
.0

6)
(1

.6
7)

(1
.8

4)
φ 1

,3
1

0.
12

00
2

0.
11

59
67

φ 2
,3

1
–0

.1
13

34
–0

.0
83

92
φ 3

,3
1

–0
.0

37
26

–0
.0

37
26

(0
.4

0)
(0

.3
0)

(1
.6

7)
(1

.9
0)

(1
.4

8)
(1

.2
1)

φ 1
,1

2
–0

.1
30

91
–0

.1
30

65
φ 2

,1
2

–0
.0

02
31

–0
.0

01
98

φ 3
,1

2
0.

03
83

0
0.

03
86

0
(1

.9
6)

(1
.7

5)
(0

.6
9)

(0
.6

0)
(0

.5
7)

(0
.3

7)
φ 1

,2
2

1.
06

81
2

1.
06

83
6

φ 2
,2

2
0.

05
35

0
0.

54
00

φ 3
,2

2
–0

.1
76

56
–0

.1
75

97
(2

0.
36

)
(2

3.
83

)
(2

.0
3)

(2
.4

4)
(8

.8
9)

(8
.9

0)
φ 1

,3
2

0.
02

69
8

0.
02

73
4

φ 2
,3

2
–0

.2
59

56
–0

.2
79

96
φ 3

,3
2

0.
17

88
1

0.
17

84
6

(1
.0

3)
(1

.0
9)

(0
.1

7)
(0

.0
9)

(2
.3

8)
(2

.4
0)

( 
C

on
ti

nu
ed

 )



17Macro-Finance Model of the US Treasury Market.

T
A

B
L

E
 3

.
(C

on
ti

nu
ed

)

P
ar

am
et

er
M

0
M

3
P

ar
am

et
er

M
0

M
3

P
ar

am
et

er
M

0
M

3

φ 1
,1

3
0.

04
14

4
0.

04
14

8
φ 2

,1
3

0.
11

03
7

0.
11

05
2

φ 2
,1

3
–0

.0
96

88
–0

.0
96

73
(2

.0
0)

(2
.0

8)
(1

.9
6)

(1
.9

0)
(0

.6
0)

(0
.6

1)
φ 1

,2
3

0.
22

13
1

0.
22

14
3

φ 2
,2

3
0.

05
11

4
0.

05
13

8
φ 2

,2
3

–0
.2

17
24

–0
.2

16
97

(1
.0

0)
(1

.0
5)

(4
.0

4)
(4

.9
1)

(1
4.

89
)

(1
6.

02
)

φ 1
,3

3
0.

96
97

1
0.

97
04

6
φ 2

,3
3

–0
.2

93
92

–0
.2

92
57

φ 2
,3

3
0.

25
03

6
0.

25
03

8
(7

.7
2)

(7
.5

8)
(1

6.
83

)
(1

6.
99

)
(1

.9
3)

(2
.0

6)



Multinational Finance Journal18

parameters were statistically significant, those attached to the financial
factor ( ) and the T-bill rate (Jr). Adding these to model M1 gives my1xJ
preferred specification M3. This has 67 parameters and a loglikelihood
of 648.3, revealing a significant improvement upon M1 (χ2(2) = 15.0; p
• 0).

These tests strongly support the stochastic volatility hypothesis:
introducing the 4 conditioning parameters of Δ1 dramatically increases
the likelihood. This parallels the results of Duffee (2002) and others
using the conventional yield-factor model. This modification has two
effects (a) it introduces quadratic Jensen terms into the yield coefficient
associated with the financial factor (20) and (b) it allows for conditional
volatility in the data. Theoretically, these two effects are inextricably
linked because the yield structure depends upon the stochastic structure.
However, it is possible to analyze themseparately. Table 2 reports the
R2 statistics associated with the 10 equations of M1, M1 and M3,
showing that these models have similar prediction errors despite the
questionable mathematical properties of the M0 yield specification.
These are only marginally higher in M3 than in M0. This is perhaps not
surprising since these models are all linear in variables and the
macro-dynamic structures are identical. Their estimated coefficients,
(both the macro parameters and the factor loadings) are numerically
very similar. In fact, the main reason why the likelihood of the EA1

models are so much higher is because of effect (b) they allow for
conditional volatility in the data, damping the effect that large residuals
have on the likelihood value as explained in the next section. This result
again parallels that of Duffee (2002) for the conventional model. In
other words, the information that the estimation procedure uses to pin
down the Δ1 parameters comes largely from the heteroscedastic
behavior of the data rather than the behavior of the yield curve itself.

I now look at the empirical results in detail. The parameters of M0
and M3 are set out in Tables 3, 4 and 5. These are generally well
determined, although as we would expect in VAR-type analysis, some
of the off-diagonal dynamic coefficients are insignificant. As in
previous studies of essentially affine yield structures, many of the
risk-adjustment parameters are poorly determined. Since the macro
parameters and factor loadings for the alternative specifications are
similar, I focus on the EA1 model and in particular the insights it yields
into the stochastic volatility structure.
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A. The Stochastic Structure

At the core of this model there is an autoregressive system (5)
determining the macro-dynamics. The novelty here is the introduction
of square root volatility effects into this structure. The time variation in
volatility is driven by the financial factor  inferred from (16):1,tx

( ) ( ) ( ) ( )
1, 60,0.005465 0.01869 0.09208 0.20833

6.02 0.51 2.38 4.55
t t t t tx y g rπ= − + − − −

( ) ( ) ( ) ( )
1 1 1 20.00237 0.04486 0.01857 0.01814

0.36 1.64 1.98 0.55
t t t tg rπ π− − − −− + + +

( ) ( )
2 20.06098 0.06762

1.42 3.33
t tg r− −+ −

This factor is dominated by the current value of the long bond yield,4 

TABLE 4. Variance structures (asymptotic t-values in parentheses)

Parameter M0 M1 Parameter M0 M1

Δ0 Δ1

δ10 1.56567 × 10–5 6.9077 × 10–6 δ11 3.1310 × 10–7

(8.04) (0.99) (–) (2.75)
δ20 1.70580 × 10–6 2.5990 × 10–4 δ21 2.3277 × 10–6

(5.07) (1.99) (–) (3.17)
δ30 3.1768 × 10–5 8.9370 × 10–5 δ31 3.5395 × 10–6

(5.94) (2.77) (–) (3.33)
δ40 4.5083 × 10–6 1.4825 × 10–3 δ41 7.0130 × 10–6

(4.67) (1.21) (–) (4.9)

G H
g21 0.18823 0.13631 h1 –0.06003 –0.04001

(6.21) (1.88) (0.21) (0.12)
g31 0.33294 0.23055 h2 0.16733 0.13103

(10.12) (3.83) (10.12) (4.35)
g32 0.14805 0.05401 h3 –0.16462 –0.24268

(9.12) (8.08) (4.12) (5.93)

4. The models of risk premia developed by Glosten et al (1993) and Scruggs (1998) are
similar in this respect. The first conditions volatility on the yield gap and the second on a
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FIGURE 3.— Policy rate (r), one period yield (y1) and financial
factor (x1)

which dominates the behavior of the long end of the yield curve. The
short end of the curve is dominated by the implicit 3 month yield which
is estimated as . The factor loadings are reported1, 1,0.92 0.12t t ty r x= +
in figure 7. This shows how the loading on the T-bill rate (rt) decays and
that on the financial factor ( ) increases with maturity in M3. These1,tx
three rates are depicted in figure 3.

The dynamic properties of the model are dominated by the
autoregressive coefficient associated with , which is close to unity1,tx
under both measures. Solving the model conditional upon  shows the1,tx
steady state effect of a permanent percentage point increase in 1,tx
would be to raise the steady state rate of inflation by 0.448, the T-bill
rate by 0.822 and the 15 year rate by 1.038 points, implying a rise in
both the real rate of interest and the risk premium. Consequently it
seems to reflect expectations about both underlying inflation and real 
interest rates.

The M3 model estimates of the financial factor are shown in Figure
4(a). This shows the one-period ahead expectation along with the 95%
confidence interval computed from the one-period ahead conditional 
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FIGURE 4(a).— Variability of the financial factor (One step ahead
estimate and 95% confidence interval)

volatility.5 This interval rises with  during the 1970s and after that1,tx
both subside. This factor also drives the volatility in the other model
variables. The one-quarter-ahead forecast values and 95% confidence
intervals for the three macro variables and the 5 and 10 year yields are
shown in figures 4(b)-(e). The effect of stochastic volatility is
particularly pronounced in the case of the T-bill rate, consistent with the
finding in univariate models (Chen and Scott (1993), Ait-Sahalia
(1996), Stanton (1997) and others). Its variance is low over the first four
years and last two years of the estimation period, consistent with the ex
post stability of interest rates over these periods (figure 4(d)). These
fluctuations in volatility are a very important factor in explaining the
superior performance of the EA1 models. That is because the likelihood
function (42) normalizes the squared prediction errors in the sum of
squares by the conditional variances, as in E((22) of Duffee (2002). In

M1-M3 these variances depend upon  and this helps to reduce the 1,tx
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5. These intervals are computed as 1.96 times the standard deviations implied by the
square roots of the conditional variances (9) and (19).
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FIGURE 4(b).— Inflation variability (One step ahead estimate and
95% confidence interval)

impact of the large errors that tend to occur when this is high.
Consequently the likelihood is much higher than for the constant
variance model M0, even though the un-normalized R2 and RMSEs of
the macro and yield forecasts of these models are similar.

This effect can be seen using a simple two-stage OLS method. That
is because the conditional means and variances are linear in the
financial factor, which can be approximated by the (lagged) 15 year
yield r60. Using this to first explain its own conditional mean, we run the
first stage OLS regression (using my 1961-2004 data set):

( ) ( )
4

60, 1 60, 1, 16.11 10 0.9678
1.68 51.98

t t ty y w−
+ += × + +

We then use  to explain the conditional variance, represented by60,ty

the squared first-stage residuals. This gives an approximation to the
volatility equation (7):
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FIGURE 4(c).— Output gap variability (One step ahead estimate
and 95% confidence interval)

( ) ( )
2 3
1, 1 60,1.61534 10 0.13142

3.68 5.86
t tw y−
+ = − × +

The slope coefficient in this regression suggests that conditional
volatility is very significant statistically.

B. The Dynamic Structure

How firmly does the financial factor anchor inflation and interest rates?
This question depends upon whether they are co-integrated with the
non-stationary nominal factor . This was checked by running ADF1,tx
tests on the residuals of these equations, which decisively reject
nonstationarity. The macro variables adjust surprisingly quickly and
smoothly to their equilibrium values (conditional upon ). This is1,tx
clear from the impulse responses, which show the dynamic effects of
innovations in the macroeconomic variables on the system. Because
these innovations are correlated empirically, I use the orthogonalized
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FIGURE 4(d).— Variability of T-bill rate (One step ahead estimate
and 95% confidence interval)

innovations obtained from the triangular factorization defined in (4).
The impulse responses show the effect on the macroeconomic system
of increasing each of these shocks by one percentage point for just one
period using the Wold representation of the system as described for
example in Cochrane (1997).

This arrangement is affected by the ordering of the macro variables
in the vector xt, making it sensible to order the variables in terms of their
likely degree of exogeneity or sensitivity to contemporaneous shocks.
The financial factor is assumed to represent exogenous expectational
influences, so this is ordered first in the sequence. This means that
independent shocks to inflation, output and interest rates can then be
interpreted as sudden shocks that are not anticipated by the bond
market. Following Hamilton (1994) inflation is ordered before the
output gap, on the view that macroeconomic shocks are accommodated
initially by output rather than price. Interest rates are placed after these
variables on the view that monetary policy reacts relatively quickly to
disturbances in output and prices. Thus the variable ordering is: ; πt;1,tx
gt and rt. This means that shocks to the financial factor (ν1) disturb all 

-5

0

5

10

15

20

25

1962 1967 1974 1981 1988 1995 2002

%



Multinational Finance Journal26

FIGURE 4(e).— Variability of 10 year yield (One step ahead
estimate and 95% confidence interval)

four variables contemporaneously as indicated by the first column of the
matrix Γ shown in (4), independent shocks to inflation (ν2) affect output
and interest rates but not the financial factor, and so on.

Figure 5 shows the results of this exercise. The continuous line
shows the effect of each independent shock on the T-bill rate, the
broken line the effect on inflation and the dotted line the effect on
output. Elapsed time is measured in quarters. Panel (i) shows the effect
of a shock to the financial factor (ν1). This could reflect an increase in
the bond market’s expected rate of inflation or the underlying real rate
of return in the economy. Output and the T-bill rate increase
immediately, but inflation does not, meaning that real interest rates
increase initially. The financial factor acts as a leading indicator for
inflation, which peaks after three years.

Panel (ii) shows the effect of an independent shock to inflation (ν2),
essentially an inflationary impulse that is not anticipated by the bond
market. The initial effect on the T-bill rate is only about a quarter of a
point, so real interest rates fall. However, output falls back, reaching a
trough after falling by 0.8% after two years, reflecting real balance and
other contractionary inflationary effects. The fall in output has the effect
of reversing the rise in inflation, setting up cycles in these variables. In
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(i) Financial factor (f ) (ii) Inflation (π)

(iii) Output gap (g) (iv) T-bill rate (r1)

Key - effects on:
– – – – inflation CCCCCC output ––––– T-bill rate

FIGURE 5.— Model M3 macroeconomic impulse responses

Note: Each panel shows the effect of a shock to one the four orthogonal innovations (υt)
shown in (4). These shocks increase each of the factors in turn by one percentage point
compared to its historical value for just one period. Since x1,t has a near-unit root, the first
shock (υ1,t) has a persistent effect, while other shocks are transient. The continous line shows
the effect on the spot rate, the dashed line the effect on output and the dotted line the effect
on inflation. Elapsed time is measured in quarters.

contrast to the effects shown in the first panel, which are highly
persistent, the system is close to its initial level after 10 years following
this inflationary impulse. The other two panels show similarly fast
responses, with qualitative effects in accordance with macroeconomic
theory.

These responses are reflected in figure 6, which report the results of
an Analysis of Variance (ANOVA) exercise. These figures show the
share of the total variance attributable to the innovations at different lag
lengths and are also obtained using the Wold representation of the
system as described in Cochrane (1997). They indicate the contribution
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(i) Inflation variance (ii) Output variance

(iii) Variance of T-bill rate (iv) Variance of 5 year yield

Key - % of variance due to orthogonal innovations in:

– – – – financial factor;  – — –  inflation; ········ output;  –––– T-bill rate.

FIGURE 6.— Model M3 Analysis of Variance

Note: Each panel shows the contribution to total variance of innovations in the orthogonal
shocks representing innovations in each of the four driving variables. Elapsed time is
measured in quarters.

each innovation would make to the volatility of each model variable if
the error process was started in the first period. Initially, the variances
of these variables are strongly influenced by their own innovations.
However the influence of the long bond innovations builds up over time,
particularly in the case of the T-bill rate, where this explains over half
of the total forecast variance after 10 years.

Figure 7 shows the factor loadings as a function of maturity
expressed in quarters. The first panel shows the loadings on rt

(continuous line) and   (broken line). The spot rate is the link1,tx
between the macro model and the term structure. Recall that in M3 it is
estimated as  . These regression weights1, 0.92t ty r= + 1,0.12 tx
determine the first quarter loadings on rt and , while other factors1,tx
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Financial factor, x1.t (– – –) and T-bill rate rt (–—) Output gt (·····) and inflation πt (— – —)

FIGURE 7.— Model M3 Factor loadings

Note: The factor loadings show the cumulative effect (after three quarters) of changes in the
four factors on yields at different maturities

have a zero loading. The loadings on rt then tend to decline
monotonically with maturity, reflecting the relatively fast adjustment
process. This mean it acts like the ‘slope’ factor in the conventional
3-factor model. In contrast, the slow-moving nature of  means that1,tx
its loading increases with maturity over most of this range, allowing it
to act as a ‘level’ factor. The next panel shows the loadings on π (dotted
line) and g (broken line).

The lower right hand panel of Figure 6 decomposes the conditional
forecast variance of the 5 year yield into the separate effects of surprises
to the four orthogonal shocks defined in (4). (ANOVA figures for the
7 and 10 year yields show a similar pattern.) Innovations in the three
macro have a modest contribution for near-term forecasts, but are
increasingly dominated by innovations in the long bond innovations.
This explains over 95% of the total forecast variance 10 years ahead.

V.  Conclusion

Conditional volatility is a common feature of macroeconomic and
financial data and as Duffee (2002) and many others have shown, it is
important to allow for this when modelling the yield curve and
derivatives that are priced off this. My specification extends the new
macro-finance model to allow for conditional volatility, bringing it into
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line with the conventional finance model. It is an EA1 specification that
conditions the central tendency and the variance structure of the model
on the financial factor, which is closely correlated with the long bond
yield. The likelihood of the new model is much higher than that of the
existing EA0 macro-finance specification, even though the raw forecast
errors of the two models are similar. As was found to be the case in the
conventional yield factor model (Duffee (2002)) this is because the EA1

model allows for conditional volatility in the factors driving the system,
damping the negative effect that large residuals have on the likelihood
value. In practice then, the information that the estimation procedure
uses to pin down the parameters of my EA1 yield model comes
indirectly from the behavior of the macroeconomic and latent factors
rather than the behavior of the yield curve itself.

My model can be seen as a modification of the conventional EA1

yield factor model of the bond market which replaces some of the latent
factors by macroeconomic variables. It shows that the stochastic
volatility identified by the conventional model is related to
macroeconomic volatility. It can use a third-order dynamic specification
with large number state variables (10) in place of the conventional
first-order system because its parameters are estimated using by
macroeconomic as well as yield data. However, the behavior of the
yield curve is largely dictated by three factors: the financial factor, the
output gap and the T-bill rate. The model is consistent with the
traditional three latent factor US finance specification in this respect,
but aligns the last two factors with observable variables. This research
opens the way to a much richer term structure specification,
incorporating the best features of the macro-finance and conventional
finance models.

Accepted by:  Prof. R. Taffler, Guest Editor, September 2008
 Prof. P. Theodossiou, Editor-in-Chief, September 2008

Appendix 1: The State-Space Representation of the Model

Stacking (4) puts the system into state space form (5), where :

(25){ }4,1, ,0 ;Nθ κ −′Θ =
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2 2

2 2

1,3 1,3 1,3

0 1 1

1
3,1 3 3 3

21 22

3,1 33 3

0 ... 0 0

...
0

0 .. 0 0 .

0 0 ... 0

l l

NI

I

ξ

ξ
−

−

⎡ ⎤
⎢ ⎥Φ Φ Φ Φ⎢ ⎥ ′⎡ ⎤⎢ ⎥Φ = = ⎢ ⎥Φ Φ⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

and where the last matrix partitions Φ conformably with (6), so that Φ21

is (N – 1) × 1 and Φ22 is (N – 1)2. Similarly:

(26)

2

1,3 1,6
1

3,6
21 22

6,1 6,3 6

1 0 0
1 0

0 .

0 0 0

NC H G
C C

−

⎡ ⎤
′⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

where the last matrix partitions C conformably with (6): C21 is (N – 1)
× 1 and C22 is (N – 1)2. The error structure of (6) follows from (8) as:

(27)2, 1 21 1, 1 22 2, 1t t t tW C w C S U+ + += +

( )2, 1 1 1,30 ,t N NU N I+ − −∼

where: { } ( )
1

2
1,3 3 4 20 21 1,1 ,0  and , ...,N N t tI Diag S Diag xδ δ− −

⎧⎧= = +⎨⎨
⎩⎩

. This implies the( ) { }
1

2
40 41 1, 4 2, 1 2, 1 4,0 ; ,0t N t t Nx U uδ δ − + + −

⎫ ⎫′ ′ ′ ′+ =⎬ ⎬
⎭ ⎭

conditional expectations:

(28)[ ]{ } [ ]{ }2 2, 1 2 1,3 2

1
exp exp ;

2t t NE U I+ −′ ′Ψ = Ψ Ψ

[ ]{ } [{ } { }2
2 2, 1 2 1,3 2 2 2

1 1
exp exp exp .

2 2t t t t N t tE S U S I S S+ −′ ′ ′Ψ = Ψ Ψ = Ψ Ψ⎡ ⎤⎣ ⎦

where:
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(29)2
0 1, 1t tS D x D= +

where: { }{ }2 4 4, ..., ,0 ; 0,1.i i i ND Diag iδ δ −′= =

Appendix 2 : The EA0 and EA1 Specifications

This appendix derives the arbitrage-free bond price systems for the EA0

and EA1 specifications. Substituting (6), (34) and (27) into (11), noting
that  and  are independent allows this to be factorized as:1, 1tw + 2, 1tU +

[ ], 1 1, 1t t t tP E M Pτ τ+ − +=

( ) ([{ 1, 1 1, 1 1, 2, 1 2 21 1,exp t t t ty x xτ τ τω γ ψ θ ξ− − −′= − + + + + + Ψ Θ +Φ +

)]} ( ){ }22 2, 2, 1 22 2, 2, 1expt t t t tX E C S Uτ − +
⎡ ′ ⎤′Φ × Ψ + Λ⎢ ⎥⎣ ⎦

(30)( )[{ }1, 1 1, 2, 1 21 1, 1 1,exp t t tE C w xτ τψ λ− − +′× + + Ψ

These errors are all Gaussian and are evaluated using (7) and (28):

( ) ([{, 1, 1 1, 1 1, 2, 1 2 21 1,expt t t t tP y x xτ τ τ τω γ ψ θ ξ− − −= − + + + + + Ψ Θ +Φ +

)} ( ) ( )22 2, 2, 1 22 2, 1,3 22 2, 1 2,

1
2t t t N t tX C S I S Cτ τ− − −′ ′ ′Φ + Ψ + Λ Ψ + Λ

(31)( )( ) }2

10 11 1, 1, 1 1, 2, 1 21

1
2 t tx Cτ τδ δ ψ λ− −

⎤′+ + + + Ψ ⎥⎦

In the case of a one period bond , which gives the{ }1, 1,expt tP y= −
initial conditions:

(32)1 1,1 1 2,1 20; ;j Jγ ψ ′= = Ψ =
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and the restriction:

( )( )2
2, 1,3 2, 10 11 1, 1,

1
;

2t t N t t tI xω δ δ λ−′= Λ Λ + +

Substituting this and (29) into (31):

( ) ({{, 1 1, 1, 1 1, 2, 1 2 21 1, 22expt t t tP y x xτ τ τ τγ ψ θ ξ− − −= − + + + + Ψ Θ +Φ +Φ

)} ( )( )2, 2, 1 22 2, 10 11 1, 1, 1 2, 1 21 1,t t t t tX C S x Cτ τ τδ δ ψ λ− − −′ ′+ Ψ Λ + + +Ψ

(33)( ) ( )2, 1 0 1 1, 2, 1 10 11 1,

1 1
2 2t tx xτ τ δ δ− −′+ Ψ Σ + Σ Ψ + +

( ) }2

1, 1 2, 1 21Cτ τψ − −′+ Ψ

The price parameter systems are obtained by specifying the prices of
risk parameters. Following Duffee (2002) I define the (N – 1) × 1
deficient vector  and write the log SDF as:[ ]2, 2, 4,0t t Nλ −

′′ ′Λ =

(34)1 1, 1, 1, 1 2, 2, 1t t t t t t tm y w Uω λ+ + +′− = + + + Λ

and then assume:

(35)1, 10 11 1, 12 2,t t txλ λ λ= + + Λ Χ

1 1 1 1
2, 22 20 22 21 1, 22 22 2,t t t t t tS C S C x S C X− − − −′ ′ ′Λ = Λ + Λ + Λ

where: Λ20 and Λ21 are (N – 1) × 1 and Λ22 is (N – 1)2. The elements of
the last N – n rows of these matrices (and the last N – n columns of Λ22)
are zero. To obtain an affine yield solution for the EA1 model it is
necessary to assume: . To allow the EA1 model to11 12 10; 0Nλ −′= Λ =
encompass EA0 I also assume that:  for EA0, checking that12 10N −′Λ =
this was acceptable at the 95% significance level. Substituting these
formulae into (33):
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( ) (([{{, 1, 1, 1 1 11 10 11 1, 2, 1 21 1 20expt t tP x j xτ τ τψ ξ δ λ λ− −′= − + − + +Ψ Φ −Σ Λ

) ( )2

21 11 10 21 2, 1 1 2, 1 11 1, 1 2, 1 21

1 1
2 2

C Cτ τ τ τδ λ δ ψ− − − −
⎤′ ′−Λ − − Ψ Σ Ψ − +Ψ ⎥⎦

( )[ ] ( )2 2, 1 22 22 2, 1 1, 1 10 10tJ τ τ τγ ψ θ δ λ− − −′ ′+ + Ψ Φ −Λ Χ + + −

( )2, 1 2 0 20 10 10 21 2, 1 0 2, 1 10

1 1
2 2

Cτ τ τδ λ δ− − −′ ′+ Ψ Θ − Σ Λ − − Ψ Σ Ψ −

(36)( ) }}2

1, 1 2, 1 21 .Cτ τψ − −′+ Ψ

For the EA1 models M1-M3, (20), (22) and (24) follow by setting 1,tλ =
and equating the coefficients of Xt in the exponent with those in10λ

(14). In this case  is interpreted in terms of the risk parameters asϒ
 . Setting δ11 and Σ1 to zero and equatingϒ = ( )1 20 21 11 10 21Cδ λΣ Λ + Λ +

coefficients gives the parameter systems for the EA0 model, including
(21). In this case: .(22) and (24) are shared with21 10 11 21Cδ λϒ = Λ +
EA1, where 0 20 10 10 21F Cδ λ= Σ Λ −

Α. Forward Rates and Risk Premia

The τ – period ahead forward interest rate is defined as

, , 1, :t t tf p pτ τ τ += −

( ) [ ], 1 1, 1 1, 1, 2, 1 2, 2, ; 1, ...,t t tf x Mτ τ τ τ τ τ τγ γ ψ ψ τ+ + +
′= − + − + Ψ −Ψ Χ =

(37)

The risk premia follow by setting the price of risk parameters to zero in
(36). This is equivalent to setting  in (30) to  and gives1tM + { }1,exp ty−
the discounted expectation under P:

[ ] [ ] ( )[{1, 1, 1 1 1, 1, 1 1, 2, 1exp expt t t t ty E P y xτ τ τ τγ ψ θ ξ− + − − −− = − + + + + Ψ
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( )] ( )2 21 1, 22 2, 2, 1 0 1 1,

1
2t t tx xτ −′Θ +Φ +Φ Χ + Ψ Σ + Σ

(38)( )( ) }2

2, 1 10 11 1, 1, 1 2, 1 21

1
2 tx Cτ τ τδ δ ψ− − −′Ψ + + +Ψ

The gross expected rate of return on a τ – period bond after one period
is this expectation  divided by its current price . Taking[ ]1, 1t tE Pτ − + ,tPτ
the natural logarithm expresses this as a percentage return and
subtracting the implicit one-period yield  then gives the expected1,ty
excess return or risk premium:

[ ] [ ], 1, 1 , 1,log logt t t t tE P P yτ τ τρ − += − −

( ) ( )1, 2, 1 21 21 1, 1
Q Q

tx τ τψ ξ ξ− −′= Ψ Φ −Φ + −⎡ ⎤⎣ ⎦

(39)( )2, 1 22 22 2,
Q

tXτ −′+ Ψ Φ −Φ

(40)( ) ( )2, 1 22 22 1, 1
Q Q

τ τψ θ θ− −′+Ψ Θ −Θ + −

(using (36) and (36)). The risk premia implied by model M3 for
representative maturities are shown in figure 8.

Appendix 3 : The Likelihood Function

This appendix derives the likelihood function and describes the
numerical optimization procedure. Because the macro and measurement
errors are assumed to be orthogonal, it shows that the likelihood of the
joint model is the sum of macro and measurement components. Using
(4) (9) and (18):

(41)( )0 ; ; where:t t
n k t

t t

w
A N F

u e

υ
+

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∼
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FIGURE 8.— Risk Premia in model M3
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so the loglikelihood for period t can be written as:

(42)( ) ( ) [ ] 11 1
ln 2 ln

2 2 2
t

t t t t t
t

n k
L F F

u

υ
π υ υ −+ ⎡ ⎤′ ′= − − − ⎢ ⎥⎣ ⎦

The Gaussian stochastic framework means that this likelihood function
normalizes the one-period ahead squared prediction errors using the
oneperiod ahead conditional variances in the usual way. However as in
E(22) of Duffee (2002) this function can be expressed in terms of the
macro and measurement errors using (41):

(43)( ) ( ) [ ] 11 1
ln 2 ln

2 2 2
t

t t t t t
t

n k
L D e D

e

υ
π υ −+ ⎡ ⎤′ ′= − − − ⎢ ⎥⎣ ⎦
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( ) ( ) ( ) 1

0 1, 1 1 0 1, 1 1
1

1 1
ln 2 ln

2 2 2

n

i t i t t t
i

n k
x xπ δ δ ν ν−

− −
=

+ ′= − − + − Δ + Δ∑

( ) 1

1

1 1
ln .

2 2

k

t te P eτ
τ

ρ −

=

′− −∑

Summing this over T periods gives the loglikelihood for the estimation
period:

( ) ( ) ( ) ( )0 1, 1 1
1 1 1

1
ln 2 ln ln

2 2 2

T n k

i t i
t i

T n k T
L x τ

τ
π δ δ ρ−

= = =

+
= − − + −∑∑ ∑

( ) 1 1
0 1, 1 1

1 1

1 1
.

2 2

T

t t t t t
t t

x e P eν ν
Τ

− −
−

= =

′ ′− Δ + Δ −∑ ∑

Since this is a quadratic in the (inverse) variances of the measurement
errors (ρ1, ..., ρ6) in (17) this can be concentrated in the usual way by
solving for their optimal values and substituting back. (This cannot be
concentrated with respect to the parameters of the macro variances since
these also affect the factor loadings in the yield equations.) This
likelihood function was maximized using the FindMinimum numerical
optimization package on Mathematica. This program checks that the
admissibility restrictions (10) hold. It also eliminates observations for
which the parameter estimates and data return negative variances,
following Chen and Scott (1993). The estimates reported here include
all observations, with non-negative definite variance structures.
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