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This paper proposes a method for estimating the VaR of a portfolio based
on copula and extreme value theory. Each return is modeled by ARMA-
GARCH models with the joint distribution of innovations modeled by copula.
The marginal distributions are modeled by the generalized Pareto distribution
in the left tail (large loss) and empirical distribution otherwise. The copula is
estimated by an estimator which gives more weight to observations with large
loss. The method is applied to a two-asset portfolio and compared to other
traditional methods (JEL: C15, D81,G10). 
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I. Introduction

Value at Risk (VaR) is largely used to measure the risk of a portfolio.
One of the main difficulties in estimating VaR is to model the
dependence structure, especially because VaR is concerned with the tail
of the distribution. This paper proposes a model based on a dynamic
econometric model for volatility, Copula Theory and Extreme Value
Theory (EVT). ARMA-GARCH models are fitted to each return in order
to explain the level and the (conditional) volatility of returns. The
heteroskedasticity-adjusted observations are modeled by copula models
whereas the marginal distributions are modeled by empirical distribution
or by the generalized Pareto distribution (GPD) in the left tail (large loss)
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and by empirical distribution otherwise. An estimator, which gives more
weight to observations with larger relative losses, is proposed to estimate
the copula. The main contributions of the paper are the proposed
marginal copula distributions and the estimation procedure. The
estimation procedure allows modeling data with asymmetric dependence
with copula families with symmetric dependence.

The paper is organized as follows. Section II introduces the portfolio
model. Section III presents the main features of copula models as the
relate to portfolio VaR estimation. Section IV presents an application to
a portfolio of Brazilian and Argentinean stock market indices and
compares the performance of the copula models to those of traditional
univariate and bivariate methods. Section V concludes.

II. The Portfolio Model

Consider a portfolio composed of n assets. Let rj,t the log returns of the
jth asset at time t. Each return is modeled by an ARMA-GARCH model.
For example the AR(1)-GARCH(1,1) model is specified as:

rj,t = cj + φjrj,t–1 + gj,t (1)

gj,t + σj,tηj,t (2)

σ2
j ,t = αj + βj g

2
j ,t–i + γj σ2

j ,t–i, (3)

where the innovations {ηj,t} are white noise processes with zero mean and
unit variance, αj, βj and γj follow the Nelson and Cao (1992) restrictions,
βj + γj <1 and j =1,...,n and t = 1,...,T . The distribution of the random
vector ηj = (η1,…,ηn,t) is modeled by copula, e.g., Dias and Embrechts
(2004) and Patton (2006b). The ARMA-GARCH models work as a filter
in order to obtain an innovation processes, i.e., a serially independent
process. Di Clemente and Romano (2005) use a variance-covariance
matrix estimated using exponentially weighted moving averages to filter
the data. All of them report some evidence that the random vector ηt is
not normally distributed. The multivariate t distribution is also not
adequate because the condition that all marginal distributions should
have the same degree of freedom is too restrictive. Decomposing the
multivariate distribution into the marginal distributions, the copula seems
to be a natural alternative because it allows modeling individual variables
and enlarging the family of multivariate distributions. In this work, the
marginal are modeled by two distributions: by the empirical distribution
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and by the GPD distribution in the lower tail and by the empirical
distribution otherwise. The use of extreme value distribution is
particularly important for emerging markets where it is expected to have
heavy tails. For example, Seymour and Polakow (2003) use univariate
extreme value theory to model a portfolio of South African stocks.

A. Value at Risk (VaR)

VaR has become the standard measure used by financial analysts to
quantify the market risk of an asset or a portfolio. Although the great
popularity of this instrument lies in the simplicity of interpretation, its
estimation is a non-trivial issue. Manganelli and Engle (2004) present a
survey of different approaches, their underlying assumptions and their
pros and cons. However, they draw attention to the fact that the number
and types of approaches to VaR estimation are growing exponentially
and that it is impossible to take all of them into account; see also Duffie
and Pan (1997) for a review. 

When the returns of each portfolio asset are small, the portfolio return
is given approximately by rt . Σj xj,t rj,t  where xj,t for j = 1,...,n are the
portfolio weights of the jth asset at time t. The 100 α% one-day-ahead
VaR denoted by υα,t is defined by:

( ), , , 1, , ; 1, 1t t j t iP r r j n i tαυ α−⎡ ⎤≤ ⏐ = = − =⎣ ⎦K K

For a two-asset portfolio with x1,t = x2,t and an AR(1)-GARCH(1,1) model
for both assets there are losses larger than υα,t if:

( ){ }2
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After estimating the whole model the VaR υα,t can be estimated by
simulation if one is able to sample from the joint distribution of
innovations, which is achieved easily by copula.

B. Dependence in Financial Time Series 

Many financial series display several characteristics known as stylized
facts. For the univariate series, the main stylized facts are: expected value
of returns near zero, presence of autocorrelation in the square of returns,
excess kurtosis, volatility clustering and long persistence. There are also
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deviations from multivariate normality. The conditional correlation
between two variables X and Y at an exceedance level ξ is defined as:

(4)( )
( )
( )

, , ,  if 0

, , ,  if 0,

corr X Y X Y

corr X Y X Y

ξ ξ ξ
ρ ξ

ξ ξ ξ

⎧ ⏐ > > ≥⎪= ⎨
⏐ < < ≤⎪⎩

where corr denotes the linear correlation conditioned on the specified
region. The concept of tail dependence relates to the amount of
dependence in the upper-right-quadrant or lower-left-quadrant tail of a
bivariate distribution. There is symmetric dependence when the amount
of dependence in both quadrant is equal, being asymmetric otherwise. 

Definition: A measure of the tail dependence is given by the coefficient
of the upper and lower tail dependence. Let (X, Y) be a bivariate
continuous random variable with marginal distribution functions FX and
FY. The coefficient of upper tail dependence of (X, Y) is defined as:

( ) ( ){ }1 1

1
lim ,U Y XP Y F X F

α
λ α α− −

→ −
= > ⏐ >

provided that the limit λU0[0, 1] exists. If λU > 0, X and Y are said to be
asymptotically dependent in the upper tail. If λU =0, X and Y are said to
be asymptotically independent in the upper tail. If the limit does not exist,
the tail dependence is not defined. The coefficient of lower tail
dependence, λL is defined similarly. 
Since P{Y > F–

Y
1(α) *X > F–

X
1(α)}, λU can be written as a limit of:
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(5)
Longin and Solnik (2001) studied the financial returns of pairs of stock
indices of the five largest world markets (US, UK, France, Germany and
Japan). They found that the correlation between large losses did not
converge to zero, as expected in the bivariate normal case, but tended to
increase when the level ξ (ξ # 0) increased in absolute levels, whereas the
correlation between large gains tended to decrease and converged to zero
when the level ξ increased. They also found evidence that the correlation
between financial returns increased in bear markets, but did not increase
in bull markets, i.e., there is asymmetric tail dependence. 
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This complex dependence structure and fat tails are not adequately
covered by traditional methods such as the variance-covariance one, the
historical approach, or GARCH models. Copula and extreme value
theory can be very helpful as claimed in this paper. 

III. Copula

The notion of copula dates back to the early works of Hoeffding and
Sklar. Nelsen (2006) presents a nice introduction to its theoretical and
practical aspects. Let (X1,...,Xn) be a n-dimension random vector with
marginal distributions F1,...,Fn and the associated uniform random
variables Ui = Fi (Xi), i = 1,...,n. If C(u1,...,un) is the distribution function
of (U1,…,Un) then the distribution function of (X1,…,Xn) is given by:

H (x1,…,xn) = C(F1(x1),…,Fn(xn)) (6)

and C(u1,…,un) is the copula function. So copula can be interpreted as a
function that links the marginal distributions of a random vector to form
their joint distribution. Conversely, if C is a copula and Fi, i = 1,…,n are
distribution functions, then the function H defined by (6) is a joint
distribution function with marginals Fi, i = 1,…,n. This shows the
usefulness of copula in multivariate financial modeling. Patton (2006b)
extended Sklar’s theorem for the conditional case. 

Sklar’s theorem for conditional distributions: Let Fi be the
distribution of Xi conditioned on Z (i.e., Xi*Z), for i = 1, ..., n and let H
be the joint conditional distribution of X*Z. Then, there exists an
n-dimensional copula C such that for all x 0Un and for any z 0 Λ

H(x1,…,xn | z) = C(F1(x1 | z),…,Fn(xn | z)). (7)

If F1,F2,…,Fn are continuous then C is unique. Conversely, if C is an
n-dimensional copula and Fi is the conditional distribution function of
Xi|Z, for i =1, …, n, then the function H defined by (7) is a conditional
joint distribution function. An interesting feature of copula is that it is
possible to simulate from the joint distribution H using the marginal
distributions and the copula functions. 

For continuous random variable X and Y it can be shown that tail
dependence is a copula property and hence the amount of tail dependence
is invariant under strictly increasing transformations of X and Y. An
alternative definition of λU and λL, using equation (5) (see, for instance
Joe [1997], p 33) is:
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where C is a copula of the variables X and Y. It shows that tail
dependence is a pure copula property since it is independent of the
margins of X and Y. Most of the copula functions (e.g., the elliptical
copula) have symmetric dependence. Some of them (e.g., like the normal
copula) have lower and upper tail dependence equal to zero. 

A copula C which satisfies C(ua) = [C(u)]a for any exponent a > 0,
where ua = (u1,…,un)

a = (ua
1,…,ua

n) is called an extreme value copula. Two
such copulae are the Gumbel and Gumbel-A copulae, which are
discussed in this paper. The Gumbel copula is defined as: 

C(u1,…,un) = exp {–[(–log u1)
1/θ]θ}.

The parameter 0 < θ # 1 controls the dependence between the random
variables. θ = 1 implies independence. In the limit when θ 6+0 there is
perfect dependence. The lower tail dependence is zero, when θ = 1, and
the upper tail dependence is (2 –2θ), when θ 6+0.
The Gumbel-A copula is defined as:

,( ) log log
, exp

log

u v
C u v uv

uvδ δ⎧ ⎫= −⎨ ⎬
⎩ ⎭

 
with 0 # δ # 1, and we have independence when δ = 0. The lower tail
dependence is equal to zero and the upper tail dependence is equal to δ/2.
Observe that when δ = 1 the maximum upper tail dependence is 0.5.

A. Diagnostic and Empirical Copula 

The goodness-of-fit of copula models can be assessed by comparing the
empirical and estimated copulae; see Junker, Szimayer and Wagner
[2006]. The first tool is a graphical representation of the empirical and
estimated copulae and the second one is a measure of distance. 

Let χ be the sample χ = {(xt
1,…,xt

n)}
T
t =1. The empirical copula is:Ĉ
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where I is the indicator function , i = 1, …,n; j = 1,…,n are the tj
th( )jt
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order statistics of the ith variable and t1,…,tn ε {1,…,T}. Therefore, the
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empirical copula is the proportion of elements from the sample that

satisfies .( ) ( )1
1, 1 ,, , nt t

t n t nx x x x≤ ≤K

The distance between the empirical and a given estimated copula Ci

in a region B of interest is defined as:
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B. Marginal Distribution of Innovations

In order to model the joint distribution of innovations by copula it is
necessary to choose the marginal distribution of innovations. Genest,
Ghoudi and Rives (1995) used the empirical distribution, Dias and
Embrechts (2004) used t-distribution, and Di Clemente and Romano
(2005) used normal distribution in the center and GPD distribution in the
tails. When estimating VaR it is interesting to use the GPD distribution
in the left tail, which corresponds to large losses. In the other region, the
right choice is not much relevant. Thus, this paper proposes the use of the
GPD distribution in the left tail and the empirical distributions otherwise.

The GPD is defined as:

( ) ( ){ }1
[ 0]1 1 ,WF w Iϑ
ωϑω ψ − /

>= − + /

where ψ > 0. It is considered that which corresponds to heavy-0,ϑ >
tailed distributions. For any jth series let Nj(cj) be the number of
observations that exceeds a threshold value cj and denotes the excesses
by Wj,i, i =1,…,Nj(cj).

Assuming that Nj(cj) excess observations are independent identically
distributed (iid) with exact GPD distribution, Smith (1987) showed that
the MLE of the GPD parameters are consistent and asymptotically
normal when . Since in this case the support is ω $ 0 and the1/ 2ϑ >
interest is in large losses, the GPD distribution is fitted to {η'j,t = –ηj,t, j
= 1,…,k, i.e., to the negative of the innovations. Notice that the GARCH
innovations are iid.

C. Model Estimation

All the model parameters can be estimated by the maximum likelihood
method, but this method may be computationally cumbersome. An
alternative is the method of Inference Function for Margins (IFM) (see
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Joe and Xu [1996]), which estimates the model in two stages. In the first
stage the marginal models are estimated independently, and in the second
stage, the copula function is estimated conditioned on the first stage
estimate. Under some regularity conditions Patton (2006a) showed that
this estimator is also asymptotically normal. This approach has been
widely used in the literature (e.g., Genest, Ghoudi and Rives [1995], Dias
and Embrechts [2004], Di Clemente and Romano [2005] and Patton
[2006a, 2006b]). In this paper the estimation is done as follows:

1. Fit ARMA-GARCH models for each return series. The residuals are
the estimates of the innovations. 
2. Fit the GPD to the negative of each innovation series after choosing
threshold values. McNeil and Frey (2000) used steps one and two in the
estimation of univariate GARCH-EVT VaR measures.
3. The copula function parameters are fitted to the residuals of step one
with two marginal distributions. In the first case, one uses the empirical
distribution of the residuals. In the second case, the GPD estimated in
step two is used for the left tail, and the empirical distribution otherwise.
A censorship type approach is proposed when estimating the copula
function parameters, since the main interest is in large losses. 

For the bivariate case, consider region D where none of the negatives
of the marginal innovations are larger than some threshold values. These
threshold values are not necessarily the same as the threshold values
chosen for the GPD distributions. Since the main interest is modeling
large losses there is no interest in the exact distribution in region D.
Therefore, the observations in this region can be treated as censored and,
in this case, the likelihood is given by: 

( ) ( )[ ]{ } ( ) ( )( )1

1, 2 1 1, 2 2,, , ;
c

n

t t t t
D

l P D c F Fη η η ηΘ ′ ′ ′ ′Θ = ∈ ΘΠ
where Θ is a vector of copula parameters, F1 and F2 are the GPDs fitted
to the residuals, n1 is the number of observations in D and c(u1, u2) is the
density function associated with the distribution function C(u1, u2).

IV. Application

The proposed methodology is applied to a two-asset portfolio composed
of IBOVESPA and MERVAL indices. The data cover the period from
3/3/1997 to 11/ 7/2000. IBOVESPA and MERVAL data were collected
from www.ipea.gov.br and from www.bolsar.com, respectively. When
at least one market was closed, this day was discarded, resulting in a total
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FIGURE 1— Returns of IBOVESPA and MERVAL from March 3rd,
1997 to November 7th, 2000. 

of 900 observations (49 days discarded). For the latter series the excess
kurtosis values were (12.58, 5.93), the asymmetries (0.60, –0,62),
minima (–0.172, –0,148) and maxima (0.288, 0.116). The returns of both
series are presented in figure 1. 

First, models were selected for each marginal series. The ARMA
model was not necessary for any series and GARCH(1,1) model was
selected to explain the conditional volatility of both series. The estimated
models are given in table 1. The estimated persistence of both series is
high, but the persistence of IBOVESPA (0.966) is larger than that of
MERVAL (0.957). The estimated correlation function of the residuals
and their squared series showed that the model was able to explain the
level and the conditional volatility of the returns. 

The estimates of the GPD distribution fitted to the largest 10%
negative values of each residuals series are given in table 2. Both shape
parameters are positive, corresponding to the heavy-tailed distribution,
but the estimated parameter for IBOVESPA is much larger than that for
MERVAL. The estimates of the copula parameters (with empirical
standard deviations in brackets) are presented in table 3 for Gumbel-GPD
(Gumbel copula with the marginal distribution fitted by GPD and
empirical distribution), Gumbel-emp (Gumbel copula with empirical
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TABLE 1. Estimates of the GARCH(1,1) for the Marginal Return Series.
Estimated Standard Deviation in Brackets. 

parameter ( )4ˆ 10α − β̂ γ̂

IBOVESPA 0.3751  0.2117 0.7539
(0.0859 ) (0.0230) (0.0269)

MERVAL 0.2842 0.1621 0.7952  
(0.0570) (0.0147) (0.0198)

TABLE 2. Estimates of the GPD Distributions with 10% of the Largest Losses.
Estimated Standard Deviation in Brackets.

parameter ĉ ϑ̂ ψ̂

1.150 0.5422
IBOVESPA 1.217 (0.0140) (0.0101)

0.0150 0.8123
MERVAL 1.155 (0.0086) (0.0152)

TABLE 3. Estimates of the Copula Parameters and the Upper Tail Coefficient.
Estimated Standard Deviation in Brackets.

Marginal Gumbel Gumbel-A

distribution θ̂ ˆ
Uλ δ̂ ˆ

Uλ

GPG 0.5300 0.5562 0.8232 0.4742
(0.0481) (0.0441) (0.0531) (0.0270)

Empirical 0.6011 0.4120 0.9581 0.4790
(0.0470) (0.0363) (0.0181) (0.0092)

distribution for all the range of the residuals), Gumbel-A-GPD and
Gumbel-A-emp. The first deciles of each marginal innovation series were
used as threshold values for region D and for the GDP distributions. The
table also presents the estimates of upper tail coefficients. The estimates
for the upper tail coefficients for all models are around 0.5 showing an
asymptotic upper tail dependence. There is no significant difference
among the upper tail estimates at the 5% level. 

The isolines of the empirical and estimated Gumbel-GPD and
Gumbel-emp models are presented in figure 2. In each plot, the largest
losses are in the top right region of the figure. Figure 2a indicates a good
agreement for the Gumbel-GPD for largest losses, but the fit is not good
when the loss becomes smaller. On the other hand, the Gumbel-emp
model (see figure 2b) presents a more balanced adjustment at all loss
levels. These results are confirmed when the distance between the
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FIGURE 2—Isolines for Empirical and Estimated Copulae: (a)
Gumbel-GPD Model and (b) Gumbel-emp Model. Starting fom the Top
Right 1%, 5%, 10%, 15%, … Largest Losses.

empirical and the estimated copulae was used. These distances were
evaluated only for the observations with the largest losses and are
presented in table 4 for the 20%, 10%, 5% and 1% largest losses.

In order to compare the VaR estimated by the models, a backtest for
the 95% and 99%Var estimates was employed. Suppose there is interest
in estimating the VaR for the t0

th observation. First, the whole model is
estimated using data up to the (t0 – 1) – th observation. Then, υa,t0 is
estimated by simulating the innovations from the estimated copula. This
whole process can be repeated until the last observation and counted the
number of cases where the observed return is smaller than the estimated
VaR . If the model is adequate it is expected to have a proportion equal
to. In this exercise, the model was re-estimated only once in every 50
observations due to the computational cost of the procedure and because
the estimates are not expected to have large modifications when only a
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TABLE 5. Proportion of Observations with Portfolio Loss Larger than the
Estimated VaR Values with (100(1 – α)%) Confidence Intervals.
Number of Observations is shown in Brackets. Best Performance
shown in Boldface.

α
Models/nominal 0.05 0.01

Gumbel-emp 0.0798 (36) 0.0254 (11)
Gumbel-GPD 0.0427 (19) 0.0075 (4)
Gumbel-A-emp 0.1225 (55) 0.0270 (12)
Gumbel-A-GPD 0.0724 (32) 0.025 (11)
Bivariate GARCH (BEKK) 0.0378 (17) 0.0067 (3)
Bivariate GARCH (DCC) 0.0355 (16) 0.0067 (3)
Bivariate EWMA 0.0378 (17) 0.0067 (3)
GARCH-n (Portfolio) 0.0578 (26) 0.0178 (8)
GARCH-t (Portfolio) 0.0622 (28) 0.0111 (5)
EWMA (Portfolio) 0.0556 (25) 0.0200 (9)
Historical simulation (Portfolio) 0.0178 (8) 0.0000 (0)

fraction of the observations is modified. Observe that by using this
approximation it is necessary to simulate from the copula only in every
50 observations. However, the VaR values are modified in every
observation because the conditional mean and variance change (for
instance, according to (1-3) for the AR(1)xGARCH(1,1) model). The
procedure was started with t0 = 451 until t0 = 900. A total of 450
observations were used to estimate the model, leaving out the first 50
observations in the last series when new 50 observations were added.

We also estimated the VaR by using different approaches. The VaR
values were also estimated using three other bivariate approaches: Engle
and Kroner (1995) first order BEKK model, the Engle (2002) Dynamic
Conditional Correlation (DCC) model and the Exponentially Weighted
Moving Average (EWMA) technique. A univariate approach was also

TABLE 4. Distance Between Empirical and Estimated Copulae for the 20%,
10%, 5% and 1% Largest Losses. Best Fit is Shown in Boldface.

Copula model 20% 10% 5% 1%
Gumbel-GPD 1.0500 0.2452 0.0899 0.0041
Gumbel-emp 0.3806 0.2218 0.0713 0.0056
Gumbel-A-GPD 1.1083 0.4365 0.1559 0.0079
Gumbel-A-emp 0.3856 0.2283 0.0738 0.0057
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applied directly to the portfolio return series using GARCH(1,1) model
with normal and t distributions, EWMA, and historical simulation. All the
GARCH models, univariate or bivariate, were fitted with a constant in
the level equations. The univariate EWMA and historical simulation are
very easy to implement. Thus, only in these cases, the models used for
the VaR were estimated in every observation and not in every 50
observations. In the EWMA approaches, the weighting factor was
selected by minimizing the mean square difference between the one-step
estimation of the volatility and the square of the observed return. The
proportion of observations with loss larger than the estimated VaR is
presented in table 5 for 95% and 99% confidence intervals. 

The analysis shows that the Gumbel-GPD model presented the best
result with empirical proportion approximately equal to the nominal
values for both confidence intervals. The copula models with empirical
distribution tended to underestimate the VaR values, showing the
importance of using heavy-tailed distributions. The other approaches, in
general, have a bad performance, at least at one of confidence intervals.
For instance, the GARCH-t(1,1) model fitted directly to the portfolio
returns had a good performance at the 99% confidence interval, but its
performance was only reasonable at the 95% confidence interval. On the
other hand, the EWMA approach had a good performance at the 95%
confidence interval but not at the 99% confidence interval.

V. Final Remarks

The proposed model outperformed other traditional models. The Gumbel
copula with the GPD marginal distribution produced a good fit in the
negative tail. The estimation procedure showed that it clearly emphasized
the fit in the tail with less attention to the other observations. The
estimation procedure adopts a censorship-type approach. This approach
also allows modeling data with asymmetric dependence with symmetric
copula function, considerably enlarging the copula functions that can be
used with this type of data. The procedure can also be used to model
largest gains. Although the results clearly indicated that copula and
extreme value theories can be very useful in estimating the VaR of a
portfolio, further investigation is necessary. For instance, it is necessary
to look for an efficient estimation algorithm, to test other copula
functions, and to look at portfolios of a higher dimension. 
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