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This paper proposes a method for estimating the VaR of a portfolio based
on copula and extreme value theory. Each return is modeled by ARMA-
GARCH models with the joint distribution of innovations modeled by copula.
The marginal distributions are modeled by the generalized Pareto distribution
in the left tail (large loss) and empirical distribution otherwise. The copulais
estimated by an estimator which gives more weight to observations with large
loss. The method is applied to a two-asset portfolio and compared to other
traditional methods (JEL: C15, D81,G10).
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|. Introduction

Value at Risk (VaR) is largely used to measure the risk of a portfolio.
One of the main difficulties in estimating VaR is to moded the
dependence structure, especially because VaR is concerned with the tail
of the distribution. This paper proposes a model based on a dynamic
econometric model for volatility, Copula Theory and Extreme Value
Theory (EVT). ARMA-GARCH modelsarefitted to each return in order
to explain the level and the (conditional) volatility of returns. The
heteroskedasti city-adjusted observations are modeled by copula models
whereasthe marginal distributionsare modeled by empirical distribution
or by the generalized Pareto distribution (GPD) in theleft tail (largeloss)
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and by empirical distribution otherwise. An estimator, which givesmore
weight to observationswith larger relative losses, isproposed to estimate
the copula. The main contributions of the paper are the proposed
marginal copula distributions and the estimation procedure. The
estimation procedure allows modeling datawith asymmetric dependence
with copula families with symmetric dependence.

The paper isorganized asfollows. Section |1 introducesthe portfolio
model. Section 111 presents the main features of copula models as the
relate to portfolio VaR estimation. Section IV presents an application to
a portfolio of Brazilian and Argentinean stock market indices and
compares the performance of the copula models to those of traditional
univariate and bivariate methods. Section VV concludes.

[l1. The Portfolio M ode

Consider a portfolio composed of n assets. Let r;, the log returns of the
j" asset at timet. Each return is modeled by an ARMA-GARCH mode!.
For example the AR(1)-GARCH(1,1) model is specified as:

le=Grofiut & (@)
&t 0j 2
o= 05+ fi €+ 75 0f i (3

wheretheinnovations{,} arewhitenoiseprocesseswith zeromeanand
unit variance, «;, ; and y; follow the Nelson and Cao (1992) restrictions,
fi+y<landj=l..nandt=1,..T. Thedisribution of the random
vector #; = (173,..-,11n,) 1S modeled by copula, e.g., Dias and Embrechts
(2004) and Patton (2006b). The ARMA-GARCH modelswork asafilter
in order to obtain an innovation processes, i.e., a serialy independent
process. Di Clemente and Romano (2005) use a variance-covariance
matrix estimated using exponentially weighted moving averagesto filter
the data. All of them report some evidence that the random vector 7, is
not normally distributed. The multivariate t distribution is also not
adequate because the condition that al marginal distributions should
have the same degree of freedom is too restrictive. Decomposing the
multivariatedistributionintothe marginal distributions, thecopulaseems
tobeanatural alternativebecauseit allowsmodelingindividual variables
and enlarging the family of multivariate distributions. In this work, the
marginal are modeled by two distributions: by the empirical distribution
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and by the GPD distribution in the lower tail and by the empirical
distribution otherwise. The use of extreme value distribution is
particularly important for emerging marketswhereit is expected to have
heavy tails. For example, Seymour and Polakow (2003) use univariate
extreme value theory to model a portfolio of South African stocks.

A. Value at Risk (VaR)

VaR has become the standard measure used by financial analysts to
guantify the market risk of an asset or a portfolio. Although the great
popularity of this instrument lies in the simplicity of interpretation, its
estimation isanon-trivial issue. Manganelli and Engle (2004) present a
survey of different approaches, their underlying assumptions and their
pros and cons. However, they draw attention to the fact that the number
and types of approaches to VaR estimation are growing exponentially
and that it isimpossibleto take all of them into account; see also Duffie
and Pan (1997) for areview.

When thereturnsof each portfolio asset are small, the portfolioreturn
is given approximately by r, = X, x, r;, wherex, forj =1,..,n are the
portfolio weights of the | asset at time t. The 100 «% one-day-ahead
VaR denoted by v, is defined by:

P[rt sUa,t|rj,t7i,j =1...,mi :L...(t—l)]:a

For atwo-asset portfoliowith x, ;= X,, and an AR(1)-GARCH(1,1) model
for both assets there are losses larger than v, if:

2
O.SZ{CJ. +or o+ (o +pel L +y0ot ) 77“} >0,

=1

After estimating the whole model the VaR v,, can be estimated by
simulation if one is able to sample from the joint distribution of
innovations, which is achieved easily by copula.

B. Dependence in Financial Time Series

Many financial series display several characteristics known as stylized
facts. For the univariate series, themain stylized factsare: expected value
of returns near zero, presence of autocorrelation in the square of returns,
excess kurtosis, volatility clustering and long persistence. There are also
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deviations from multivariate normality. The conditional correlation
between two variables X and Y at an exceedance level ¢ is defined as:

corr (X, YIX > &Y > ), if £20
p(g)= 4)

corr (X, YIX <£Y < &), if £<0,

where corr denotes the linear correlation conditioned on the specified
region. The concept of tail dependence rdates to the amount of
dependence in the upper-right-quadrant or lower-left-quadrant tail of a
bivariate distribution. There is symmetric dependence when the amount
of dependence in both quadrant is equal, being asymmetric otherwise.

Definition: A measure of the tail dependenceis given by the coefficient
of the upper and lower tail dependence. Let (X, Y) be a bivariate
continuous random variable with marginal distribution functionsF, and
F.. The coefficient of upper tail dependence of (X, Y) isdefined as:

A =limP{Y> R (@)X > R ()],

provided that the limit A,€[0, 1] exists. If 2, > 0, X and Y are said to be
asymptotically dependent in the upper tail. If 4, =0, X and Y are said to
beasymptotically independent inthe upper tail. If thelimit doesnot exi<t,
the tail dependence is not defined. The coefficient of lower tail
dependence, 4, isdefined similarly.

Since P{Y > F{!(a) |X > F'(a)}, Ay can be written as alimit of:

1-P{X <F (@)} - P{Y <R (@)} + P{X <F(a),Y <FY(e))
1-P{X <Fl(e)}

®)
Longin and Solnik (2001) studied the financia returns of pairs of stock
indices of thefivelargest world markets (US, UK, France, Germany and
Japan). They found that the correlation between large losses did not
convergeto zero, as expected in the bivariate normal case, but tended to
increasewhenthelevel & (¢ < 0) increased in absoluteleve s, whereasthe
correlation between large gainstended to decrease and converged to zero
whenthelevel &increased. They also found evidencethat the correlation
between financial returnsincreased in bear markets, but did not increase
in bull markets, i.e., there is asymmetric tail dependence.



Estimating Var Using Copula and EVT 209

This complex dependence structure and fat tails are not adequately
covered by traditional methods such as the variance-covariance one, the
historical approach, or GARCH models. Copula and extreme value
theory can be very helpful as claimed in this paper.

[11. Copula

The notion of copula dates back to the early works of Hoeffding and
Sklar. Nelsen (2006) presents a nice introduction to its theoretical and
practical aspects. Let (X,,...,X,) be a n-dimension random vector with
marginal distributions F,,...,F, and the associated uniform random
variablesU; = F, (X),i =1,...,n. If C(u,,...,u,) isthedistribution function
of (U,,...,U,) then the distribution function of (X,,...,X,) isgiven by:

H (X0, %) = C(F1(x),....Fi(X,)) (6)

and C(u,,...,u,) isthe copulafunction. So copula can beinterpreted asa
function that links the marginal distributions of arandom vector to form
their joint distribution. Conversdly, if Cisacopulaand F;,i=1,...,nare
distribution functions, then the function H defined by (6) is a joint
distribution function with marginals F;, i = 1,...,n. This shows the
usefulness of copulain multivariate financial modeing. Patton (2006b)
extended Sklar’ s theorem for the conditional case.

Sklar's theorem for conditional distributions: Let F, be the
distribution of X; conditioned on Z (i.e., X;|Z), fori =1, ..., nand let H
be the joint conditiona distribution of X|Z. Then, there exists an
n-dimensional copula C such that for al x eR"and forany ze A

H(Xy,... % [2) = C(Fi(X, [ 2),....F4(X, | 2)). ()

If F,,F,,...,F, are continuous then C is unique. Conversdly, if Cisan
n-dimensional copulaand F; is the conditional distribution function of
Xi|Z, fori =1, ..., n, then the function H defined by (7) is a conditional
joint distribution function. An interesting feature of copulaisthat it is
possible to simulate from the joint distribution H using the margina
distributions and the copula functions.

For continuous random variable X and Y it can be shown that tail
dependenceisacopulaproperty and hencetheamount of tail dependence
is invariant under strictly increasing transformations of X and Y. An
alternative definition of A, and 4., using equation (5) (see, for instance
Joe[1997], p 33) is:
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(U u .

A =Iim1—2u+C(u u) 4 lim

u—l1- l_ u u—0+

where C is a copula of the variables X and Y. It shows that tail
dependence is a pure copula property since it is independent of the
margins of X and Y. Most of the copula functions (e.g., the dliptical
copul @) have symmetric dependence. Some of them (e.g., likethe normal
copulad) have lower and upper tail dependence equal to zero.

A copula C which satisfies C(u?) = [C(u)]? for any exponent a > 0,
whereu®=(uy,...,u)?=(U,...,10) iscalled an extremevalue copula. Two
such copulae are the Gumbel and Gumbel-A copulag, which are
discussed in this paper. The Gumbel copulais defined as:

C(ulv"'vun) =exp {—[(—lOg ul)lle]g} .

The parameter 0 < 6 < 1 controls the dependence between the random
variables. 6 = 1 implies independence. In the limit when 6 -+0 thereis
perfect dependence. The lower tail dependenceis zero, when 6 = 1, and
the upper tail dependenceis (2 —2%), when 6 -+0.

The Gumbel-A copulais defined as.

C;(uv)= uvexp{—&M} :
loguv

with 0 < ¢ < 1, and we have independence when ¢ = 0. The lower tail
dependenceisegual to zero and the upper tail dependenceisequal to 6/2.
Observe that when 6 = 1 the maximum upper tail dependenceis0.5.

A. Diagnostic and Empirical Copula

The goodness-of-fit of copulamodels can be assessed by comparing the
empirical and estimated copulae; see Junker, Szimayer and Wagner
[2006]. The first tool is a graphical representation of the empirical and
estimated copulae and the second one is a measure of distance.

Let y bethesampley ={(X,,...,X)}{-.. Theempirical copulaé is:

(bt ) 1d
e L

t=1

where | isthe indicator function xf") =1 ..nj=1...,naethe tjth
order gtatistics of the i" variable and t,,....t, € {1,...,T}. Therefore, the



Estimating Var Using Copula and EVT 211

empirical copula is the proportion of elements from the sample that
satisfies ¥, <X ,..., %, <X

The distance between the empirical and a given estimated copula C;
in aregion B of interest is defined as:

sce)], T (¢t olbn b)]

B. Marginal Distribution of Innovations

1/2

In order to model the joint distribution of innovations by copula it is
necessary to choose the margina distribution of innovations. Genest,
Ghoudi and Rives (1995) used the empirical distribution, Dias and
Embrechts (2004) used t-distribution, and Di Clemente and Romano
(2005) used normal distributioninthe center and GPD distributioninthe
tails. When estimating VaR it isinteresting to use the GPD distribution
intheleft tail, which correspondsto large losses. In the other region, the
right choiceisnot much relevant. Thus, this paper proposesthe use of the
GPD distributionintheleft tail and theempirical distributionsotherwise.
The GPD is defined as:

Fv (W) ={1- 1+ 30 )"}y,

where y > 0. It is considered that ##> 0, which corresponds to heavy-
tailed distributions. For any j" series let N/(c) be the number of
observations that exceeds athreshold value ¢; and denotes the excesses
by W, i =1,...,Nc).

Assuming that N(c;) excess observations are independent identically
distributed (iid) with exact GPD distribution, Smith (1987) showed that
the MLE of the GPD parameters are consistent and asymptotically
normal when #>1/2 . Since in this case the support is @ > 0 and the
interest isin large losses, the GPD distribution is fitted to {7, = —;., ]
=1,...,k i.e, tothe negative of theinnovations. Notice that the GARCH
innovations areiid.

C. Model Estimation
All the model parameters can be estimated by the maximum likelihood

method, but this method may be computationally cumbersome. An
dternative is the method of Inference Function for Margins (IFM) (see
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Joe and Xu [1996]), which estimates the model in two stages. In thefirst
stagethe margina model sareestimated independently, and in the second
stage, the copula function is estimated conditioned on the first stage
estimate. Under some regularity conditions Patton (2006a) showed that
this estimator is also asymptotically normal. This approach has been
widely usedintheliterature (e.g., Genest, Ghoudi and Rives[1995], Dias
and Embrechts [2004], Di Clemente and Romano [2005] and Patton
[2006a, 2006b]). In this paper the estimation is done as follows:

1. Fit ARMA-GARCH models for each return series. The residuals are
the estimates of the innovations.

2. Fit the GPD to the negative of each innovation series after choosing
threshold values. McNeil and Frey (2000) used steps one and two in the
estimation of univariate GARCH-EVT VaR measures.

3. The copula function parameters are fitted to the residuals of step one
with two margina distributions. In the first case, one uses the empirical
distribution of the residuals. In the second case, the GPD estimated in
step two isused for theleft tail, and the empirical distribution otherwise.
A censorship type approach is proposed when estimating the copula
function parameters, since the main interest isin large losses.

For the bivariate case, consider region D where none of the negatives
of themarginal innovationsare larger than some threshold values. These
threshold values are not necessarily the same as the threshold values
chosen for the GPD distributions. Since the main interest is modeling
large losses there is no interest in the exact distribution in region D.
Therefore, the observationsin thisregion can betreated as censored and,
in this case, the likelihood is given by:

1(©)={R,[(m,,77x)e DJ}* I;IC(Fl(nLt),Fz(ﬂ;,t):@)

where ® isavector of copulaparameters, F, and F, are the GPDsfitted
totheresiduals, n, isthe number of observationsin D and ¢c(uy, u,) isthe
density function associated with the distribution function C(u,, u,).

V. Application

The proposed methodol ogy is applied to atwo-asset portfolio composed
of IBOVESPA and MERVAL indices. The data cover the period from
3/3/1997 to 11/ 7/2000. IBOVESPA and MERV AL datawere collected
from www.ipea.gov.br and from www.bolsar.com, respectively. When
at |east one market was closed, thisday was discarded, resulting in atotal
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FiGUrRe 1— Returns of IBOVESPA and MERVAL from March 3rd,
1997 to November 7th, 2000.

of 900 observations (49 days discarded). For the latter series the excess
kurtosis values were (12.58, 5.93), the asymmetries (0.60, —0,62),
minima(—0.172,-0,148) and maxima(0.288, 0.116). Thereturnsof both
series are presented in figure 1.

First, models were selected for each margina series. The ARMA
model was not necessary for any series and GARCH(1,1) model was
selected to explain the conditional volatility of both series. The estimated
models are given in table 1. The estimated persistence of both seriesis
high, but the persistence of IBOVESPA (0.966) is larger than that of
MERVAL (0.957). The estimated correlation function of the residuas
and their squared series showed that the model was able to explain the
level and the conditional volatility of the returns.

The egtimates of the GPD distribution fitted to the largest 10%
negative values of each residuals series are given in table 2. Both shape
parameters are positive, corresponding to the heavy-tailed distribution,
but the estimated parameter for IBOV ESPA ismuch larger than that for
MERVAL. The estimates of the copula parameters (with empirical
standard deviationsin brackets) arepresentedin table 3 for Gumbel-GPD
(Gumbe copula with the marginal distribution fitted by GPD and
empirical distribution), Gumbel-emp (Gumbel copulawith empirical
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TABLE 1. Estimates of the GARCH(1,1) for the Marginal Return Series.
Estimated Standard Deviation in Brackets.

parameter a(107) B y

IBOVESPA 0.3751 0.2117 0.7539
(0.0859) (0.0230) (0.0269)

MERVAL 0.2842 0.1621 0.7952
(0.0570) (0.0147) (0.0198)

TABLE 2. Estimates of the GPD Distributions with 10% of the Largest L osses.
Estimated Standard Deviation in Brackets.

parameter c v 174
1.150 0.5422

IBOVESPA 1.217 (0.0140) (0.0101)
0.0150 0.8123

MERVAL 1.155 (0.0086) (0.0152)

TABLE 3. Estimates of the Copula Parameters and the Upper Tail Coefficient.
Estimated Standard Deviation in Brackets.

Marginal Gumbel Gumbel-A
distribution 7] A ) A
GPG 0.5300 0.5562 0.8232 0.4742
(0.0481) (0.0441) (0.0531) (0.0270)
Empirical 0.6011 0.4120 0.9581 0.4790
(0.0470) (0.0363) (0.0181) (0.0092)

distribution for all the range of the residuas), Gumbel-A-GPD and
Gumbel-A-emp. Thefirst decilesof each marginal innovation serieswere
used asthreshold valuesfor region D and for the GDP distributions. The
table also presents the estimates of upper tail coefficients. The estimates
for the upper tail coefficients for all models are around 0.5 showing an
asymptotic upper tail dependence. There is no significant difference
among the upper tail estimates at the 5% level.

The isolines of the empirica and estimated Gumbel-GPD and
Gumbel-emp models are presented in figure 2. In each plot, the largest
losses arein thetop right region of thefigure. Figure 2aindicates agood
agreement for the Gumbel-GPD for largest losses, but thefit is not good
when the loss becomes smaller. On the other hand, the Gumbel-emp
model (see figure 2b) presents a more balanced adjustment at all loss
levels. These results are confirmed when the distance between the
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a) Gumbel-GPD model
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b) Gumbel-emp model

FIGURE 2—Isolines for Empirical and Estimated Copulae: (a)
Gumbel-GPD Model and (b) Gumbel-emp Model. Startingfomthe Top
Right 1%, 5%, 10%, 15%, ... Largest L osses.

empirical and the estimated copulae was used. These distances were
evaluated only for the observations with the largest losses and are
presented in table 4 for the 20%, 10%, 5% and 1% largest |osses.

In order to compare the VaR estimated by the models, a backtest for
the 95% and 99%V ar estimates was employed. Supposethereisinterest
in estimating the VaR for the t,"" observation. First, the whole model is
estimated using data up to the (t, — 1) — th observation. Then, v, is
estimated by simulating the innovations from the estimated copula. This
whol e process can be repeated until the last observation and counted the
number of cases where the observed return is smaller than the estimated
VaR . If the model is adequate it is expected to have a proportion equal
to. In this exercise, the model was re-estimated only once in every 50
observations due to the computational cost of the procedure and because
the estimates are not expected to have large modifications when only a
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TABLE 4. Distance Between Empirical and Estimated Copulae for the 20%,
10%, 5% and 1% L argest L osses. Best Fit is Shown in Boldface.

Copula model 20% 10% 5% 1%

Gumbel-GPD 1.0500 0.2452 0.0899 0.0041
Gumbel-emp 0.3806 0.2218 0.0713 0.0056
Gumbel-A-GPD 1.1083 0.4365 0.1559 0.0079
Gumbel-A-emp 0.3856 0.2283 0.0738 0.0057

TABLE 5. Proportion of Observations with Portfolio Loss Larger thanthe
Estimated VaR Values with (100(1 — &)%) Confidence Intervals.
Number of Observations is shown in Brackets. Best Performance
shown in Boldface.

Models/nominal 0.05 0.01
Gumbel-emp 0.0798 (36) 0.0254 (11)
Gumbel-GPD 0.0427 (19) 0.0075 (4)
Gumbel-A-emp 0.1225 (55) 0.0270 (12)
Gumbel-A-GPD 0.0724 (32) 0.025 (11)
Bivariate GARCH (BEKK) 0.0378 (17) 0.0067 (3)
Bivariate GARCH (DCC) 0.0355 (16) 0.0067 (3)
Bivariate EWMA 0.0378 (17) 0.0067 (3)
GARCH-n (Portfolio) 0.0578 (26) 0.0178 (8)
GARCH-t (Portfolio) 0.0622 (28) 0.0111 (5)
EWMA (Portfolio) 0.0556 (25) 0.0200 (9)
Historical smulation (Portfolio) 0.0178 (8) 0.0000 (0)

fraction of the observations is modified. Observe that by using this
approximation it is necessary to simulate from the copula only in every
50 observations. However, the VaR values are modified in every
observation because the conditional mean and variance change (for
instance, according to (1-3) for the AR(1))XGARCH(1,1) model). The
procedure was started with t, = 451 until t, = 900. A total of 450
observations were used to estimate the model, leaving out the first 50
observationsin the last series when new 50 observations were added.
We aso estimated the VaR by using different approaches. The VaR
valueswere a so estimated using three other bivariate approaches: Engle
and Kroner (1995) first order BEKK model, the Engle (2002) Dynamic
Conditional Correlation (DCC) model and the Exponentially Weighted
Moving Average (EWMA) technique. A univariate approach was aso
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applied directly to the portfalio return series using GARCH(1,1) model
with normal and t distributions, EWMA, and historical smulation. All the
GARCH models, univariate or bivariate, were fitted with a constant in
the level equations. The univariate EWMA and historical simulation are
very easy to implement. Thus, only in these cases, the models used for
the VaR were estimated in every observation and not in every 50
observations. In the EWMA approaches, the weighting factor was
selected by minimizing the mean square difference between the one-step
estimation of the volatility and the square of the observed return. The
proportion of observations with loss larger than the estimated VaR is
presented in table 5 for 95% and 99% confidence intervals.

The analysis shows that the Gumbel-GPD moded presented the best
result with empirical proportion approximately equal to the nomina
values for both confidence intervals. The copula models with empirical
distribution tended to underestimate the VaR values, showing the
importance of using heavy-tailed distributions. The other approaches, in
general, have abad performance, at least at one of confidence intervals.
For instance, the GARCH-t(1,1) model fitted directly to the portfolio
returns had a good performance at the 99% confidence interval, but its
performance was only reasonabl e at the 95% confidenceinterval. Onthe
other hand, the EWMA approach had a good performance at the 95%
confidence interval but not at the 99% confidence interval.

V. Final Remarks

Theproposed model outperformed other traditional models. The Gumbel
copula with the GPD margina distribution produced a good fit in the
negativetail. Theestimation procedure showed that it clearly emphasized
the fit in the tail with less attention to the other observations. The
estimation procedure adopts a censorship-type approach. This approach
a so allows modeling data with asymmetric dependence with symmetric
copulafunction, considerably enlarging the copulafunctionsthat can be
used with this type of data. The procedure can also be used to model
largest gains. Although the results clearly indicated that copula and
extreme value theories can be very useful in estimating the VaR of a
portfolio, further investigation is necessary. For instance, it is necessary
to look for an efficient estimation agorithm, to test other copula
functions, and to look at portfolios of a higher dimension.



218 Multinational Finance Journal
References

Di Clemente, A., and Romano, C. 2005. Measuring portfolio value-at-risk by
acopulaand EVT based approach. Sudi Economici 85:29-57

Dias, A., and Embrechts, P. 2004. Dynamic copula models for multivariate
high-frequency data in finance. Working Paper. Zurich: ETH.

Duffie, D., and Pan, J. 1997. An overview of vaue at risk. Journal of
Derivatives (Spring): 7-49.

Engle, R. 2002. Dynamic conditional correlation - asimpleclassof multivariate
GARCH. Journal of Business and Economics Satistics 20: 339-350.

Engle, R., and Kroner, K. F. 1995. Multivariate simultaneous generalized
ARCH. Econometric Theory 11(1): 122-150.

Genest, C.; Ghoudi, K.; and Rives, L.-P. September 1995. A semiparametric
estimation procedure of dependence parameters in multivariate families of
distributions. Biometrika 82: 543-552.

Joe, H. 1997. Multivariate Models and Dependence Concepts. London:
Chapman and Hall.

Joe, H., and Xu, J. J. 1996. The estimation method of inference functions for
margins for multivariate models. Technical Report 166. Vancouver:
University of British Columbia, Department of Statistics.

Junker, M.; Szimayer, A.; and Wagner, N. 2006. Nonlinear term structure
dependence: Copula functions, empirics, and risk implications. Journal of
Banking and Finance 30 (April): 1171-1199.

Longin, F., and Solnik, B. 2001. Extreme correlation of international equity
markets. Journal of Finance 56 (April): 649-676.

Mangandlli, S., and Engle, R.F. 2004. A comparison of Vaue at Risk in
Finance. Chapter 9. In G. Szego (ed.). Risk Measures for the 21% Century.
Wiley Finance Series.

McNeil, A., and Frey, R. 2000. Estimation of tail-related risk measures for
heteroscedastic financial time series: An extreme value approach. Journal of
Empirical Finance 7 (November): 271-300.

Nelson, D. B., and Cao, C. Q. 1992. Inequality constraints in the univariate
GARCH model. Journal of Business and Economic Satistics 10 (April):
229-235.

Nelsen, R. B. 2006. Introduction to Copulas. 2™ Ed., NY: Springer Verlag.

Patton, A. 2006a. Estimation of multivariate models for time series of possibly
different lengths. Journal of Applied Econometrics 21(2): 147-173.

Patton, A. 2006b. Modelling asymmetric exchange rate dependence.
International Economic Review 47(2): 527-556.

Seymour, A. J., and Polakow, D. A. 2003. A coupling of extreme-value theory
and volatility updating with Value-at-Risk estimation in emerging markets:
A South African test. Multinational Finance Journal 7 (March/June): 3-23.

Smith, R. L. 1987 Estimating tails of probability distributions. The Annals of
Satistics 15 (3): 1174-1207.



