
* We acknowledge helpful comments from anonymous referees.

(Multinational Finance Journal, 2008, vol. 12, no. 1/2, pp. 67–104)
Quarterly publication of the Multinational Finance Society, a nonprofit corporation. 
© Global Business Publications. All rights reserved.  
DOI: 10.17578/12-1/2-4

1

Value-at-Risk for Greek Stocks

Timotheos Angelidis
University of Peloponnese, Greece

Alexandros Benos
National Bank of Greece, Greece

This paper analyses the application of several volatility models to forecast
daily Value-at-Risk (VaR) both for single assets and portfolios. We calculate the
VaR number for 4 Greek stocks, 2 portfolios based on these securities and for
the Athens Stock Exchange General Index. We model VaR for long and short
trading positions by employing non-parametric methods, such as historical and
filtered historical simulation, as well as parametric ones. Especially for the later
techniques we use a collection of ARCH models (GARCH, EGARCH and
TARCH) based on three distributional assumptions (Normal, Student-T and
Skewed Student-T), while we combine the Extreme Value Theory with a
volatility updating technique (via GARCH type-modeling). In order to choose
one model among the various forecasting methods, we employ a two-stage
backtesting procedure. In the first one, we implement two backtesting criteria
(unconditional and conditional coverage) to test the statistical accuracy of the
models. In the second stage, we employ standard forecast evaluation methods
in order to examine whether any differences between models that have
converged are statistica lly significant (JEL: C22; C52; C53; G15).

Keywords: value-at-risk, GARCH, historical simulation, backtesting.

I. Introduction

Value-at-Risk (VaR) has been considered by regulatory authorities and
financial institutions as the most important market risk measure. In
general, VaR refers to a portfolio’s worst outcome that is expected to
occur over a predetermined period (one or ten trading days) at a given
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confidence level (e.g., 97.5% or 99%). According to the Basel
Committee on Banking Supervision (the Amendment to the Capital
Accord to Incorporate Market Risks, January 1996), the VaR
methodology can be used by financial institutions to calculate capital
charges with respect to their interest rate, equity, foreign exchange and
commodity risk.

VaR has, nevertheless, been criticized as a measure of market risk
on two grounds. Artzner et al. (1997, 1999) showed that it is not
necessarily sub-additive, i.e., the VaR of a portfolio with two
instruments maybe greater than the sum of individual VaRs and
therefore managing risk by using it may fail to automatically stimulate
diversification. Moreover, it does not give any indication about the size
of the potential loss given that this loss exceeds the VaR number. In
order to remedy the effects of these shortcomings Delbaen (1998) and
Artzner et al. (1997) introduced the Expected Shortfall risk measure,
which equals the expected value of the losses conditional on a VaR
violation. Furthermore, Basak and Shapiro (2001) suggested an
alternative risk management procedure that also focuses on the expected
loss when (and if) losses occur. They substantiated that the proposed
procedure generates losses lower than those of the VaR-based risk
management techniques. Last, but not least, the standard VaR measure
presumes that asset returns are normally distributed, while it is widely
documented that they really exhibit non-zero skewness and excess
kurtosis and, hence, the VaR measure either underestimates or
overestimates “true risk”.

In order to calculate this infamous metric, a researcher may either
use a parametric or a non-parametric method. Under the framework of
non-parametric techniques, Historical Simulation methods that are
based on the empirical distribution of returns, have been thoroughly
examined by several authors without, however, reaching a unanimous
conclusion. Hendricks (1996), Vlaar (2000) and Danielsson (2002)
argued that sample size affects the precision of VaR estimates, with
larger sizes producing the most accurate estimations. On the contrary,
Hoppe (1998) proposed the use of smaller sizes, since they can
accommodate structural changes of trading behavior, a view also
expressed by Frey and Michaud (1997). Lambadiaris et al. (2003)
exploited the accuracy of both the historical and the Monte Carlo
simulation methods in two different markets. For a stock portfolio, they
concluded that the historical simulation method is not appropriate for a
risk manager for daily VaR calculation, while, for a bond portfolio,
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results were mixed, as the best method depends on the backtesting
measure and the confidence level chosen. For commodity markets,
Cabedo and Moya (2003) developed an ARMA historical simulation
method to estimate daily VaR. They compared it to the simple historical
one and concluded their technique yielded better estimates.

Other researchers preferred to use parametric methods. We can
classify the procedures into two categories. In the mixture case,
Venkataraman (1996) and Zangari (1996) suggested a mixture of normal
distributions to accommodate the observed skewness and kurtosis of
financial time series and hence to describe them better than the standard
normal distribution. A more thorough analysis was conducted by Billio
and Pelizzon (2000) who estimated a multivariate switching regime
model to calculate the VaR for 10 Italian stocks and several portfolios
made up from them. Their procedure is different from that of Zangari
(1996) in that (a) the regime forecasts are generated by a two state
Markov process instead of a Bernoulli one and, (b) volatility clustering
is more easily accommodated under their framework. Based on two
backtesting measures (proportion of failures and time to first failure),
they substantiated that the switching regime specification is more
accurate than other known methods (RiskMetricsTM or GARCH with
Normal and Student-t distributions). In the single state case, authors
evaluated the forecasting ability of the most well known volatility
techniques (GARCH, APARCH, RiskMetricsTM) under several
distributional assumptions (Normal, Student-t, Skewed Student-t).
Gurmat and Harris (2002) pointed out that, compared to the
GARCH(1,1) specification under both the Normal and the Student-t
distributions, the proposed exponentially weighted likelihood model
improved the estimated daily VaR number at higher confidence levels.
Giot and Laurent (2003a, 2003b) estimated daily VaR both for long and
short trading positions by employing an APARCH Skewed Student-t
model to take into account the asymmetry of their dataset. They showed
that it performed better than the pure symmetric approach, since it
described more accurately the empirical distribution. Brooks and
Persand (2003) also consider the issue of asymmetry in the VaR
framework and concluded that models, which do not allow for
asymmetries either in the unconditional return distribution or in the
volatility specification, underestimate the “true” VaR. Finally, Bali and
Theodossiou (2004) combined the Skewed Generalized t-distribution
with 10 GARCH specifications and calculated both VaR and Expected
Shortfall numbers. They argued that the TS-GARCH, proposed by
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1.  For more information on EVT and VaR see Jondeau and Rockinger (1999), MacNeil
and Frey (2000), Jondeau and Rockinger (2003), Ho et al. (2000), Rozario (2002), Seymour
and Polakov (2003), Bali (2003), Gençay and Selçuk (2004) and Byström (2004) among
others.

Taylor (1986) and Schwert (1989), and EGARCH, introduced by
Nelson (1991), had the best overall performance.

So far, all models presented were based on Historical Simulation
methods and on variance-covariance techniques. Hull and White (1998)
and Barone-Adesi, Giannopoulos and Vosper (1999) introduced the
Filtered Historical simulation (FHS), which combines both of the above.
More specifically, it does not make any distributional assumption about
standardized returns, but forecasts variance through a structured
volatility model. Hence, it can be considered as a mixture of parametric
and non-parametric procedures. Moreover, Barone-Adesi and
Giannopoulos (2001) demonstrated the superiority of FHS over the
historical one, by showing that generated better VaR forecasts. Under
the same framework, the Extreme Value Theory (EVT) has been
recently proposed: it only models the tails of the distribution rather than
the entire distribution. Therefore, it focuses on the parts that are
essential to VaR.1

The purpose of our paper is twofold. First, we want to implement
several volatility models (parametric or not) in order to estimate the
97.5% and 99% one-day VaR for both long and short trading positions.
We then aim at evaluating the predictive accuracy of various models
under a risk management framework. We employ a two-stage procedure
to investigate the forecasting power of each volatility forecasting
technique. In the first stage, two backtesting criteria (unconditional and
conditional coverage) are implemented to test the statistical accuracy of
the models. In the second stage, we employ standard forecast evaluation
methods to examine whether the differences between models that have
sufficiently satisfied the first stage criteria, are statistically significant.

Even if our article looks similar to papers cited above, there are still
significant differences. First, we investigate the risk management
techniques for both long and short trading positions, while most of the
research has focused only on long ones. Given the fact that the financial
series exhibit non-zero skewness, it is important for a risk manager to
know whether his/her VaR model can be applied to both positions.
Second, we employ parametric, non-parametric and semi-parametric
techniques in order to investigate their relative performance in a unified
environment, contrary to existing literature that, to the best of our
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knowledge, focuses only on one technique at a time. Third, we
implement the two-stage model selection procedure outlined above in
an attempt to possibly identify a unique model for each security, trading
position and confidence level. Finally, our empirical analysis is carried
on a small emerging market, permitting a performance comparison with
techniques used in more developed markets.

Our results point out to the need to develop more sophisticated
backtesting measures as, in most cases examined, statistical measures
cannot identify one model for each case. On the other hand, under an
internal loss function framework we developed, we are able to evaluate
differences between VaR models and hence choose among alternative
risk management practices. Moreover, based on the two backtesting
measures used, both EVT and FHS generate accurate VaR numbers for
both trading positions and confidence levels, as they capture more
efficiently than parametric methods the characteristics of the empirical
distribution. Under the framework of the loss function, the FHS should
be applied to short trading positions, while for long ones there is no
unique specific model that performs better overall. This may imply that
even asymmetric models are not sufficiently asymmetric for the returns
observed.

The rest of the paper is organized as follows. Section II provides a
description of various VaR methods, while section III describes the
evaluation framework. Section IV presents preliminary statistics for the
dataset, explains the estimation procedure and presents the results of the
empirical investigation. Section V concludes.

II. Value-at-Risk

In this section, we present various parametric and non-parametric
methods that we apply in order to estimate the daily VaR number. We
will differentiate the former by conditional variance structure and by
underlying distribution. Specifically, we use three distributional
assumptions (Normal, Student-t and Skewed Student-t) combined with
GARCH, EGARCH and TARCH specifications. For non-parametric
methods on the other hand, we will take advantage the quantiles of the
empirical distribution.

The 1-day VaR is defined as Pr (yt + 1 < VaRt + 1 / t ) = α, where yt + 1

is the future change of the portfolio’s value, while α is one minus the
VaR confidence level. More formally, VaR is calculated based on the
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2. For more information on volatility forecasting in financial markets see Poon and
Granger (2003) among others.

following equation:
, (1)( )1 1VaR t t t tF α σ+ +=

given that F (α) is the corresponding quantile of the assumed
distribution and σ t + 1 | t is the predicted conditional standard deviation at
time t. Under the assumption that portfolio returns are normally
distributed, the calculation of VaR is greatly simplified, as both σ t + 1 | t

and F (α) have tractable expressions. This Variance-Covariance (VC)
method, nevertheless, usually underestimates true VaR, since the
normality assumption is usually rejected for financial series. Therefore,
we need to make conjectures about (a) the underlying distribution and
(b) the conditional variance innovation. We will fully exploit these
paths in the following sections.

A. Parametric Volatility Forecasting Models

Let yt = ln (St / St –1) denote the continuously compounded rate of return
from time t – 1 to:

yt = μ + et, (2)

where St is the asset price at time t, μ is the conditional mean, and the
unpredictable component, et , can be expressed as:

et = gt σt, (3)
where εt is iid.

Given that most volatility models have been thoroughly examined
by several authors and that our main focus is to evaluate their
forecasting performance under a VaR framework, we briefly present
them in table 1.2

We now turn to the several distributional assumptions one can make
for εt . Engle (1982) introduced the ARCH process under the assumption
of normality.

(4)( ) ( ) ( ) ( )2 21 22 t

tD e
εε π −−=

The excess kurtosis generated from a GARCH process is not often able
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3. See Theodossiou (1998).

to describe the fat tails of time series. Consequently, Bollerslev (1987)
proposed the standardized symmetric Student-t distribution with ν > 2
degrees of freedom:

, (5)( ) ( )( )
( ) ( )

1
2 21 2

; 1
22 2

tD

ν
ν εε ν

νν π ν

+−Γ + ⎛ ⎞
= +⎜ ⎟−Γ − ⎝ ⎠

where is the gamma function. The Student-t distribution is( )Γ
symmetric around zero and for v > 4 the conditional kurtosis equals
3(v – 2) (v – 4)–1 , which exceeds the normal value of three. For v ÷ 4
, however, the density function of that distribution converges to the
standard normal one. Still, many authors prefer to use asymmetric
distributions since the Student-t distribution cannot accommodate the
observed skewness of financial time series.3 Based on the work of
Lambert and Laurent (2001), we will follow the same path and use the

TABLE 1. Volatility Forecasting Models

Model Equation

GARCH(p, q)
2 2 2

0 1 1
q p

t i i t i k k t ka a e bσ σ= − = −= + +∑ ∑

RiskMetricsTM ( )2 2 2
1 11t t tσ λσ λ ε− −= + −

EGARCH(p, q)
( ) ( )

( )( )
2

0 1

2
1

ln

ln

t i t i

t i t i

q
t i i i

p
j j t j

a a

b

ε ε
σ σσ γ

σ

− −

− −=

= −

= + +

+

∑
∑

TARCH(p, q)
2 2 2 2

0 1 1 1 1 1 1
q p

t i i t t t j j t ja a d bσ ε γ ε σ= − − − = −= + + +∑ ∑
Note:  This table summarizes the volatility forecasting models. RiskMetricsTM sets λ

equal to 0.94 for daily volatility forecasting. dt is a dummy variable which takes the value
1 if εt > 0 and 0 otherwise.
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standardized Skewed Student-t distribution:
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where D (.;v) is defined in 5, ξ is the asymmetry coefficient, while

 and s2 = (ξ 2 + 1 / ξ 2 – 1) – m2 are the mean and
( )

( ) ( )1
2

2
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v

m ν

ν
ξπ

ξ
−Γ −
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variance of the non-standardized Skewed Student-t distribution,
respectively. As Lambert and Laurent (2000) noted, the density is
skewed to the right (left) if log (ξ ) > 0 (< 0). Also, they produced the

α-quantile function, , of the non-standardized Skewed Student-t, ,stα ν ξ
∗

distribution as follows:
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It is now straightforward to estimate the VaR number.

B. Historical Simulation

Historical simulation (HS) has received much attention because of its
simplicity and its relative lack of theoretical burden. It uses historical
returns and derives the VaR number for a specific confidence interval
as the corresponding quantile of the empirical historical distribution:

(8){ }{ }1 1
VaR Quantile ,100

np
t t t t

y p+ =
=

Specifically, it assumes that the future distribution of yt is well
described by the empirical (historical) one. By relying on actual prices,
it accommodates non-normal distributions and, therefore, accounts for
“fat tails” and non-zero skewness. This simplicity does not come
without a cost, however, as the choice of the sample size, n, affects the
estimates. If n is too large, then the most recent observations, which
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probably describe the future distribution better, carry the same weight
as the earlier ones, which most probably are not as important as the
latest ones. In case n is too small, the following may occur: either too
few or insufficient extreme events will be observed. In both cases, the
sample size is a hinder factor and hence “true” VaR is either
underestimated or overestimated. This remark was confirmed by Van
den Goorbergh and Vlaar (1999) who argued that VaR estimates for
Dutch equity were extremely sensitive to sample length.

C. Filtered Historical Simulation

In the case of parametric methods, the distributional choice is crucial,
while for non-parametric ones, we see there is no consistent method of
estimating the volatility innovation. The Filtered Historical Simulation
method (FHS), introduced by Hull and White (1998) and Barone-Adesi,
Giannopoulos and Vosper (1999), replicates the tails of the distribution
in the way proposed by Barone-Adesi and Giannopoulos (2001). Using
the quantiles of standardized residuals and the conditional standard
deviation forecast from a volatility model, the VaR number is calculated
as:

(9){ }1 11
VaR Quantile ,100

n

tt t t tt
pε σ+ +=

⎡ ⎤= ⎣ ⎦

For empirical investigation purposes, we assume the volatility
estimates and the corresponding quantiles are being generated via a
GARCH (1,1) process. The combination of the two methods might
alleviate the problems faced by “classica” approaches, since we
accommodate volatility clustering, observed “fat” tails and non-zero
skewness of the empirical distribution.

D. Extreme Value Theory

The study of extremes in financial series has gradually grown in the last
few years. Of course, it is obvious that any statistical procedure
attempting to model extremes should benefit from the appropriate
choice of the underlying distribution. Therefore, the Generalized Pareto
Distribution (GPD) may well describe the behavior of extremes, as
summarized by the so-called “tail index” τ. We apply the EVT method
on standardized portfolio returns (εt = yt / σt ~ i.i.d.D (0, 1)) because, for
non-iid returns, the estimated parameters of the GDP density are biased.
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4. See Balkema and de Hann (1974) and Pickands (1975) among others.

5. For more information, see Christoffersen (2003).

Moreover, following McNeil and Frey (2000), we filter the return series
via a GARCH (1,1) process, in order to catch the empirical distribution.

The estimation technique implemented attempts to model the
breaking of a threshold u, also known as the peaks over threshold
method. The probability that standardized returns are greater than u is
given by:

,( ) { } ( ) ( )
( )

|
1u

F x u F u
F x Pr z u x z u

F u

+ −
≡ − ≤ > =

−

where x > u. If one lets the threshold u get large, then GPD is the
limiting distribution of the number of excesses.4 The density function
of GPD, G(x; τ,ψ), is described by:
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where ψ > 0 is a scale factor and

                     if       0  
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The GPD covers a wide range of distributions: for example, if τ > 0,
it addresses the heavy tailed ones, while, if τ < 0, it includes the short
tailed distributions, less frequently used in financial studies. Finally, it
converges to the density function of the standard normal distribution
when τ = 0.

Under the assumption of τ > 0, a reasonable one for most financial
time series, the Hill estimator of the tail index (τ) equals:5

, (11)
1

1
ln i

u
iu

y
T

u
τ

=
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∑
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6. A violation occurs if the predicted VaR is not able to cover realized losses.

where Τu is the number of observations above the threshold u, which is
assumed to be equal to 5% of the total sample size (Τ). Hence, under
this framework, the VaR is calculated as:

, (12)t+1 1VaR t t t
u

p
u

T T

τ

σ
−

+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

where p denotes the VaR confidence level.

III. Evaluation Framework

The objective of this section is to evaluate the adequacy of VaR
forecasts as “risk predictors” in a risk management environment. Two
backtesting procedures (unconditional and conditional coverage) will
serve as the final diagnostic check in order to judge the “quality” of the
VaR forecasts. The purpose of backtesting is twofold. First, we would
like to test whether the average number of realized VaR violations, in
an out-of-sample time period, is statistically equal to the expected one.6

It is important to note that the estimated Value-at-Risk number must
neither overestimate nor underestimate, on average, the “true” but
unobservable Value-at-Risk. In the former case, the financial institution
may keep costly capital idle and, surely, does not use it efficiently; in
the latter, its capital may not be enough to cover possible losses (in the
proposed confidence level). Second, given the fact that an adequate
model must widen VaR forecasts during high volatility periods and
narrow them in low volatility ones, it is necessary to examine whether
violations are also randomly distributed.

Unfortunately, in most cases, there are more than one risk models
that satisfy both backtesting procedures. Therefore, a risk manager will
not be able to select a unique volatility forecasting technique, solely
based on them. Hence, in order to achieve such a goal, we should
compare the best performing models among all those that have passed
the test, via a loss function, in an attempt to select one of them among
the various candidates.



Multinational Finance Journal78

A. Unconditional Coverage

Let It + 1 be a sequence of VaR violations that can be described as:

1 1

1
1 1

1,     if  VaR

0,    if  VaR

t t t

t
t t t

y
I

y

+ +
+

+ +

<⎧⎪= ⎨ <⎪⎩

and therefore N = 3 t
T

 = 1 It is the number of days over a T period that the
portfolio loss was greater than the estimated VaR.

As Kupiec (1995) stated, the failure number follows a binomial
distribution and, consequently, the appropriate likelihood ratio statistic,
under the null hypothesis that the observed exception frequency equals
to the expected one (N / T = p), will be given by:

(13)( ) 2
12ln 1 2ln 1

T N N
T N N

uc

N N
LR p p x

T T

−
−⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

Table 2 presents the no rejection regions of N for various sample
sizes and confidence levels. Although this test can reject a model that
has generated too many or too few VaR violations, its power is
generally poor since, especially for high confidence levels, as it cannot
indicate the inadequate model, even if the difference between the
observed and the expected failure turns out to be significant.

TABLE 2. Kupiec’s (1995) Unconditional Coverage Test

Confidence Evaluation sample size
level 250 500 750 1000

5.0% 7 # N # 19   17 # N # 35   27 # N # 49  38 # N # 64
1.0% 1 # N # 6 2 # N # 9 3 # N # 13 5 # N # 16
0.5% 0 # N # 4 1 # N # 6 1 # N # 8 2 # N # 9
0.1% 0 # N # 1 0 # N # 2 0 # N # 3 0 # N # 3

Note:  This table presents Kupiec's (1995) unconditional coverage test. No rejection
regions for a 5% test size.
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7. A similar test has also been developed by Engle and Manganelli (2003).

B. Conditional Coverage

For all these reasons, another test was developed by Christoffersen
(1998) to jointly examine the hypotheses that (a) the total number of
failures is statistically equal to the expected one and, (b) that the VaR
violations are independent.7 If a risk model is well specified and hence
incorporates the characteristics of the conditional distribution
(time-varying volatility, kurtosis and skewness), the exception indicator
(It + 1) must be unpredictable. Under the null hypothesis that the failure
process is independent and the expected proportion of violations is
equal to p, the appropriate likehood ratio is given by:

(14)
( )

( ) ( )00 1001 11 2
01 02 11 11 2

2ln 1

2ln 1 1  ,

T N N

n nn n

p p

xπ π π π

−⎡ ⎤− − +⎣ ⎦
⎡ ⎤− −⎣ ⎦

where nij is the number of observations with value i followed by j, for
i, j = 0, 1,

ij
ij

j ij

n

n
π =

∑

are the corresponding probabilities. When ij = 1, it means that a
violation has been observed, while ij = 0 indicates the opposite. If the
sequence of It is independent, the probabilities to observe or not a VaR
violation in the next period must be equal, which can be written
formally as π01 = π11 = p. Contrary to Kupiec’s (1995) test, the
conditional coverage procedure can reject a VaR model that generates
too many or too few clustered violations.

C. Loss Functions

In addition to the two backtesting measures outlined previously, a risk
manager must also be able to evaluate the proposed models according
to a utility function. Lopez (1998) introduced the magnitude loss
function, which incorporates both the total number of violations and
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8.  This proxy will at least meet the unconditional coverage requirement since, by
definition, the total number of violations will be equal to the expected one.

their magnitudes. It is defined as:

( )2

1 11 1Lopez
1
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1 VaR ,    if  VaR  

0,                                   if  VaR  .

t tt t t t
t

t t t

y y

y

+ ++ +
+

+ +

⎧ = − <⎪Ψ = ⎨
≥⎪⎩

The magnitude term, (yt + 1 – VaRt + 1 | t)
2 , ensures that the larger the

failure is, the higher the penalty added. At the same time, as in Kupiec’s
(1995) test, a score of one is added whenever a violation occurs.
According to Lopez’s (1998) loss function, a model that minimizes the
total loss (Ψ = 3 t

T
 = 1Ψ t

Lopez) should be preferred over others.
Moreover, an inherent problem of risk models is that the “true”

Value-at-Risk is never observed, not even after the realization of the
actual return. However, this “true” VaR can be proxied using the
empirical distribution of realized returns. For example, if T observations
are available for the out-of-sample evaluation, their p-quantile will
approximate the “true” VaR.8 The proposed loss function, named
Quantile Loss (QL), has the following form:

(15)
( )

{ }( )

2

1 11 1
QL

1 2

11 11

VaR ,                            if   VaR

 Quantile ,100 VaR ,  if   VaR  ,

t tt t t t

t
T

tt t t t

y y

y p y

+ ++ +

+

++ +

⎧ − <⎪Ψ = ⎨
⎪ − ≥
⎩

Given the QL function, a model is penalized either by the magnitude
(yt + 1 – VaRt + 1)

2 term, if a violation occurs, or by the distance between
the p-quantile of the realized future returns and the calculated VaR
(Quantile {y, 100p}1

T – VaRt + 1|t)
2. Contrary to Lopez’s (1998) loss

function, QL does not add a score of one if the predicted VaR cannot
cover the future loss, since, under the proposed framework, we evaluate
only models that have not been rejected by the two statistical
backtesting measures.

Furthermore, following the work of Diebold and Mariano (1995),
Sarma, Thomas and Shah (2003) and Angelidis, Benos and Degiannakis
(2004), we investigate the forecasting ability of the models according
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9. For more details about heteroskedastic and autocorrelated consistent (HAC) standard
errors, see White (1980) and Newey and West (1987).

10. These four stocks represented 24% of the total market capitalization of ASE in 1991,
while this percentage was lower (15%) during 2003.

11. The FTASE-20 Index is the large capitalization index of the ASE, made up from the
20 largest companies listed in the Athens Stock Exchange.

to their loss differential are
1 1 1 1

QL QL QL QL
1 ,  where  and 

t t t tt A B A Bz
+ + + ++ ≡ Ψ − Ψ Ψ Ψ

the loss function indicators of models A and B respectively. The
Diebold-Mariano (1995) statistic is the “t-statistic” of a regression of
zt + 1 on a constant with heteroskedastic and autocorrelated consistent
standard errors.9

IV. Empirical Investigation

A. Data

To evaluate all these volatility models, we generate out-of-sample VaR
forecasts for four individual Greek shares (Alpha Bank, Emporiki Bank,
National Bank of Greece - NBG and Titan Cement Co.), for two equally
weighted share portfolios defined below and, finally, for the General
Athens Stock Exchange (ASE) index, obtained from DataStream for the
period of January 2, 1991 to December 18, 2003.10 The first portfolio,
P_Small, is based on the returns of these four shares, while the second
one, P_All, is calculated from all stocks that currently belong to the
FTASE-20 Index.11

For all equities and portfolios, we compute daily log returns and plot
them. Volatility clustering is clearly visible in figure 1, while figure 2
presents the QQ-plot against the normal distribution: it shows that all
log returns exhibit non-symmetrical fat tails. Hence, any VaR model
must account for volatility clustering, excess kurtosis and skewness at
the same time. Table 3 provides summary statistics, the Jarque-Bera
statistic as well as the Ljung-Box (1978) statistic for serial correlation
of the squared returns for up to 10th order. In all cases, the normality
hypothesis is rejected at any level of significance, as there is clear
evidence of significant excess kurtosis and positive skewness.
Moreover, the Ljung-Box test statistic Q2 (10) indicates the presence of
conditional heteroskedasticity. These preliminary descriptive statistics
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FIGURE 1—Continuously Compounded Daily Returns from January 2,
1991 to December 18, 2003.
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FIGURE 2—QQ-plot against the normal distribution. The time period
is from January 2, 1991 to December 18, 2003.
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12.  In all cases, we work with 3234 observations and generate 2234 out-of-sample
forecasts.

demonstrate, on the one hand, that the right and left tails of the
empirical distributions are different and therefore, it is interesting to
evaluate all risk models both for short and long trading positions, while
on the other hand they suggest the use of GARCH modeling, which
recognizes temporal dependence in the second moment of daily log
returns.

Although there is evidence that stock returns have an asymmetric
effect on volatility, one has to perform a formal test to examine the sign
and size bias, according to Engle and Ng’s (1993) diagnostic procedure:

, (16)2
0 1 1 2 1 1 2 1 1ˆ ˆ ˆt t t t t t te S S e S eφ φ φ φ ξ− − +

− − − − −= = + + +

where S t
–

 – 1 is a dummy variable, taking the value 1 if  êt – 1 < 0 and 0
otherwise. The variable S t

+
– 1 is simply equal to 1 – S t

–
 – 1 and, finally,

êt – 1 are the residuals of equation 2. If φ1 is statistically significant, then
ê t

2 depends on the sign of êt – 1 , whereas a significant φ2 or φ3 indicates
that also the size of the shock (et) affects the conditional variance.
Therefore, a joint test of sign and size effects (φ1 = φ2 = φ3 = 0) can be
performed based on equation 16. Table 4 shows a significant sign and
size effect in the conditional variance and therefore the inclusion of
asymmetric components in the volatility specification is supported.

B. Statistical Evaluation of the VaR Models

For all models, all single equities and all portfolios we use a rolling
sample of 1000 observations, in order to forecast the 97.5% and 99%
VaR values of both long and short trading positions.12 At each iteration,
we compare the predicted VaR number with the realized return,
construct the exception variable (It + 1) and the corresponding loss
function (Ψt + 1) and use both of them to assess the statistical accuracy
of the various risk management techniques.

Exception rates at both confidence levels and the p-values of the
backtesting measures are presented in tables 5 and 6. Results can be
summarized as follows:

a. We often find that the VC and the RiskMetrics (RM) methods are
not appropriate risk management techniques in practice, since, for all 
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cases, they tend to underestimate the “true” VaR and hence are rejected
by the two backtesting measures. For the short trading positions and for
both confidence levels, the failure rates are statistically different from
their theoretical values, due to excess kurtosis and positive skewness of
returns (see table 3).

b. As expected, models based on the Normal distribution, such as
the GARCH, EGARCH and TARCH, perform better than the VC and
the RM methods. For long positions and for the 97.5% confidence level
specifically, the failure rates are statistically equal to their theoretical
values. Generally speaking, for short positions and for both two
confidence levels, these models still do not produce acceptable VaR
forecasts, as they underestimate the “true” VaR (in percentages ranging
from 29% to 82%).

c. GARCH models under the Student-t and its corresponding
Skewed distribution overestimate VaR numbers at both the 97.5% and
the 99% level, a result also documented by several studies (see Guermat
and Harris [2002], Billio and Pelizzon [2000] among others). Even at 

TABLE 4. Volatility Specification Test

φ0 φ1 φ2 φ3 χ2(3)

Alpha Bank 0.00018* 0.00004 0.01553* –0.01951* 56.36*
(0.00004) (0.00006) (0.00301) (0.00340)

Emporiki 0.00022* 0.00013 0.01733* –0.02145* 57.98*
(0.00007) (0.00009) (0.00349) (0.00454)

NBG 0.00025* 0.00002 0.01793* –0.01548* 53.04*
(0.00005) (0.00007) (0.00326) (0.00362)

Titan 0.00022* 0.00007 0.01281* –0.01507* 77.62*
(0.00003) (0.00005) (0.00270) (0.00228)

P_All 0.00007** 0.000081** 0.00989* –0.01729* 73.98*
(0.00003) (0.00003) (0.00163) (0.00303)

P_Small 0.00010* 0.000107*** 0.01364* –0.01830* 78.90*
(0.00004) (0.00006) (0.00262) (0.00324)

Ase 0.00008* 0.0000823** 0.01040* –0.01732* 73.19*
(0.00003) (0.00004) (0.00190) (0.00306)

Note:  This table presents the Engle and Ng (1993) volatility specification test. The
test is performed to the residual of equation 2. Standard errors are in parenthesis; *, **, ***
indicate significance at the 1%, 5% and 10% levels, respectively. The period runs from
January 2, 1991 until December 18, 2003.
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the 99% level, they do not offer a major improvement, as average
realized exception rates are significantly lower than expected ones.
Moreover, in terms of the two backtesting measures, there are no
statistical differences between the two distributions used, since for all
portfolios, the asymmetry parameter (log (ξ)) is very close to zero and
consequently, the Skewed Student-t distribution is equivalent to the
symmetric one.

d. The Historical Simulation method, although it satisfies the
“unconditional coverage” prerequisite, it does not meet that of
“conditional coverage,” since, for almost all cases, the p-value of the
corresponding test is less than 10%. More specifically, if a VaR
violation occurs one day, the probability to observe another one the
following day is high. Hence, we observe clustered violations, as HS
does not update the VaR number quickly enough when market volatility
rises.

e. The FHS and the EVT procedures seem to offer a major
improvement over parametric methods. Generally speaking, exception
rates are too close to the theoretically expected ones, both for long and
short trading positions. For example, the average proportion of failures
of the EVT method at the higher confidence level is 1% exactly (!),
while the corresponding proportion for FHS is slightly smaller. The
improved performance of these models is due to the empirical quantiles
being higher than those of the Normal distribution.

f. Consequently, FHS and EVT structures seem to describe more
efficiently the tails of the empirical distribution than the corresponding
parametric or non-parametric models. There is strong evidence that the
GARCH model under a Normal distribution underestimates the risk at the
99% confidence level, while under the Student-t distribution
overestimates it. The introduction of the asymmetry parameter (ξ) does
not appear to improve VaR estimations, as it is close to one in most cases.

C. Model Selection

The two backtesting measures cannot directly compare different VaR
models, as a greater p-value of one model does not indicate the
superiority of that model over its competitors. Therefore, in order to
evaluate statistically the reported differences, we compute the QL
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13. The Type II error here is set equal to 10%.

function and carry out the equality test that was described in section
III.C for each model that produced a p-value for both tests greater than
10%. We preferred such a high cutoff point for p-values to ensure that
(a) “successful” models will not statistically over / under estimate “true”
VaR, as a high (low) VaR will imply in practice that the financial
institution allocates more (less) capital than actually necessary and, (b)
VaR violations will not be clustered. Furthermore, by increasing the
level of significance to 10%, we can more easily reject an incorrect
model, which could otherwise be costly for a risk manager.13

Tables 7 and 8 summarize results of the loss function approach. For
example, in panel A of table 7, the model with the smallest loss value
for Emporiki Bank is the TARCH under the Normal distribution (T-N),
while the other two models that have not been rejected by the two
backtesting criteria are the GARCH with a Normal distribution (G-N)
and the FHS. Based on panel B of table 7, we conclude that the
differences between the T-N and the G-N models are not statistically
significant, yet the former and the FHS are not equivalent approaches.

For short positions, in most cases, the FHS method is preferred over
the others, since it is either the only method producing accurate
forecasts, or it minimizes the value of the loss function. For long
positions, results are mixed: no model seems to systematically produce
globally acceptable VaR estimates, as almost for each equity and each
portfolio there is a different model that is characterized as a preferred
one. Nevertheless, based on the proposed model selection procedure, we
manage to reduce the chosen models to a smaller set.

Finally, in order to summarize the model selection procedure, we
present in table 9, the two stages we followed. In the first two columns
(2 and 3), we list the models that have not been rejected by the
statistical backtesting measures, while in the last one (column 4), we list
the volatility methods that were preferred over the others based on the
loss function method.

V. Conclusion

In this paper we examine different Value-at-Risk estimation methods.
Using an out-of-sample testing framework, we compare:

1. Parametric methods, i.e., the Variance Covariance and the
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RiskMetricsTM approaches with GARCH, EGARCH and TARCH
volatility modeling, under the Normal, the Student-t and the Skewed
Student-t distributions;

2. Non Parametric methods, i.e., the Historical Simulation approach,
and;

3. Semi-Parametric methods, i.e., the Filtered Historical Simulation
and the EVT procedures both for long and short trading positions. At the
99% confidence level, the FHS method performs better than the other
ones, as forecasts accurately the corresponding VaR values. For the
same confidence level, the EVT method also produces acceptable
results. On the hand, at the lower confidence level, most models give
similar and good results.

As backtesting procedures are not powerful enough to identify a
unique model for each individual equity or portfolio, at each different
confidence level and for each trading position, we go on to explicitly
develop a loss function to evaluate those models that have met two
standard prerequisites: that of a correct “unconditional” and of
“conditional” coverage. Under this new framework, a model that
minimizes total loss is preferred over the others. By subsequently
implementing a test for the differences of forecast errors, we provide
statistical inference for the forecasting ability of all acceptable models.
In most cases, there are significant differences between them. Given that
we started initially with 14 possible combinations, we managed to
reduce them to a smaller set using this procedure and, in some cases,
even to identify a unique optimal risk management technique.
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