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This paper re-examines the issue of mean reversion in stock prices by
incorporating the structural break effect in the long horizon regression. Before
adjusting for structural break, the paper finds that previous studies understate
the evidence of mean-reversion. The understatement is mainly due to the
clustering heteroskedasticity and autocorrelation in the overlapping returns.
After adjusting for structural break(s), no evidence of predictability for
value-weighted returns has been documented. However, stronger evidence of
mean reversion in stock prices is documented for equally-weighted portfolios.
The reverse effect of structural break can be explained by the switch to mean
aversion in the last subperiod of value-weighted portfolios while no such switch
in equally weighted portfolios (JEL: G1, C22).
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I. Introduction

The long-horizon predictability conditional on past returns has been the
focus of many studies of market efficiency. Based on the variance ratio
test of Cochrane (1988), Poterba and Summers (1988) and Lo and
MacKinlay (1988) find that the variance of returns increases at a rate,
which is less than proportional to the holding period.  This implies that
a substantial part of the variance in monthly returns is due to a
predictable component. Fama and French (1988), using univariate
autoregression of multiyear returns, also present evidence of mean
reverting behavior and conclude that about 35% of stock variation is
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1. Anderws (1991) shows that Barlet kernel HAC matrix of Newey and West behaves
poorly when the data exhibits temporal dependence. This problem is more critical when the
least square is used.

predictable from past returns. Further, Kim, Nelson, and Startz (1991),
use stratified randomization to account for non-normality in the data,
and find that mean reversion is only a pre-war phenomenon. The
autoregression parameter flips to be positive for the post-war period
(mean aversion). Finally, McQueen (1992) explicitly solves the problem
of heteroskedasticity resulting from the commutative overlapping
returns using a randomized Generalized Least Squares test. According
to his test, he cannot reject the hypothesis of random walk, and finds
that mean reversion is only statistically significant at the 3-and 4-year
horizons in the 1926 to 1946 subperiod.

This paper re-examines the issue of mean reversion by incorporating
the effect of a structural break on the parameter vector. A formal test of
structural break was not taken into account when the previous tests were
conducted. This extension is critical since the shift in the parameter
estimate may be large enough to affect the value of parameter estimates
and the standard error of the regression, which may give wrong inference
about the random walk hypothesis. Another extension is the use of the
Moving Blocks Bootstrap, hereafter MBB, of Fitzenberger (1998) in
solving for the bias of the autoregression parameter and correcting for
both the heteroskedasticity and autocorrelation problems. Fitzenberger
(1998) established the ability of the MBB to provide asymptotic
refinements when the errors are both heteroskedastic and autocorrelated.
It is shown that the MBB heteroskedastic and autocorrelated consistent
covariance matrix, hereafter HAC, is equivalent to the Barlett kernel
suggested by Newey and West (1987) and performs better when the
samples exhibit temporal dependence.1

 The remainder of the paper is as follows. Section II reviews previous
studies and shed lights on the complications of testing mean reversion.
Section III provides the methodology and model estimation. Section IV
outlines the data used. Section V tests the hypothesis of mean reversion
and explains the results. Section VI concludes.

II. Previous Studies and Structural Break in Stock Return

As has been noted by Summers (1986), there has been a lack of power
in testing the random walk hypothesis using traditional tests. Fama and
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2. One of the differences between Monte Carlo simulation and randomization simulation
is that the former assumes normality in random variables. The advantage of randomization over
Monte Carlo is clear in the hypothesis testing if the return is not normally distributed.

3. Standard error of the regression is downward bias if errors are correlated and upward
bias if they are heteroskedastic.

French (1988), hereafter F&F, find evidence of mean reversion in stock
returns over long horizons (i.e., in excess of 18 months). They estimate
an autoregression where the return over the interval t – T to t, call this
Rt – K,t, is correlated with Rt,t + K:

Rt,t + K = α + βKRt – K,t + gt (1)

They consider return horizon K from one to ten years. They find little
or no autocorrelation, except for holding periods of between K = 2 and
K = 7 years for which BT is less than zero. There was a peak at K = 5
years when B = –0.5, indicating that a 10 percent negative return over
five years is, on average, followed by a 5 percent positive return over
the next five years. The R2 in the regression for the three to five-year
horizons are about 0.35. Therefore, the mean reversion (B < 0) is
consistent with that from the anomalies literature where a “buy low, sell
high” strategy earns persistent positive profits. 

Four issues relating to autoregression test are now in order. First, the
small sample bias of the OLS estimates of BT since the true mean of the
predictor is unknown in the finite sample. Kendall (1954) showed that
the bias in the OLS estimate of BK is decreasing with the sample size
and increasing with the value of the point estimate, in particular:

(2)( ) ( ) ( )21 3 /K K KE n O nβ β β −− = − + +

F&F correct for the bias in the least square estimate using Monte
Carlo simulations, their results show that the bias is not large enough to
affect the results. Using randomization simulation of Noreen (1989),
Kim, Nelson, and Startz (1991) get the same results since the
distribution does not affect the parameter estimate.2

Another issue concerns the methods used to correct for
heteroskedasticity and autocorrelation in overlapping multiperiod
returns. The problem of autocorrelation and heteroskedaticity leads to
an inefficient least square estimate since the standard error is bias and
inconsistent.3 F&F use the method of Hansen and Hodrick (1980),
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4. Richardson (1993) argues that properly adjusting for finite sample bias,
heteroskedasticity, and autocorrelation in univariate autoregression may reverse many of the
inferences of F&F (1988).

hereafter HH, which adjusts the autocorrelated standard error with
MA(K – 1) error structure where K is the return horizon. In the case of
multiperiod returns this method may be inappropriate since positive
definiteness of the covariance matrix may not exist. Also they try to
adopt White (1980) heteroskedastic consistence variance estimator with
HH to solve for both problems. They find that the t-ratios are more
dispersed than those of HH. Thus, they report the t’s based on HH
alone. Richardson and Stock (1989) assume that the stock returns
variance is stationary. Based on this assumption, they adjust the
standard error for a form of stationary conditional heteroskedasticity.
The resulting standard errors are so large as to provide a test statistic
close to zero regardless of the point estimates.4 However, Turner, Startz,
and Nelson (1989) provide evidence that the variance of the
long-horizon return is nonstationary. Moreover, McQueen (1992)
explicitly solves for the clustering heteroskedasticity results from
overlapping returns using the GLS randomization test. According to his
results, he cannot reject the random walk hypothesis. However, there are
two problems with McQueen’s method used to solve the problem of
heteroskedasticity in the overlapping returns. 

First, the historical GLS results are inefficient since the first
observation in the estimation is dropped and the problem will be more
severe as the return horizon becomes longer. For example, in estimating
the 10-year horizon returns he drops the first 120 observations from the
monthly returns. 

Second, the use of the Depression/World War II period as a weight
in the GLS randomization test is adopted without a formal test of
structural change in the returns variance, which may overstate the result
of no mean reversion.

The third dimension of the problem is the existence of a structural
break in the stock return horizon, Fama and French argue “the evidence
is clouded by statistical issues (changing parameters, heteroskedasticity)
that such a long time raises”. Following Perron (1989), it is known that
apparent persistence in the data could be the result of unmodeled
structural breaks in the underling data process. Therefore, the test for
the existence of the stationary component in stock returns may be
weakened in favor of accepting the random walk since the transitory
component is no longer stationary, from t to t + k, even it is stationary
about the break.
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5. One of the disadvantages of the Ave (Average) and Exp (Exponential) tests of
Andrews and Ploberger (1994) is that they perform quite poorly when an incorrect alternative
is assumed.

6. Viceira (1997) uses the recursive and reverse recursive tests based on the spirit of
Ploberger, Kramer, and Kontrus (1989), Brownian motion process to test for parameter
stability for the long horizon regression. He argues that the fluctuation tests based on the
Brownian motion process is more appropriate than the sequential tests in the case of testing
for mean reversion.

7. Moreover, Chu, Hornik, and Kuan (1995a) show that MOSUM test outperforms
Ploberger and Kramer (1992) test in terms of empirical power.

III. Methodology

This section describes the moving sums standardized residuals
(MOSUM) test introduced by Chu, Hornik, and Kuan (1995a) and the
moving estimate (ME) test introduced by Chu, Hornik, and Kuan
(1995b) to test for endogenous structural break(s) and the moving
blocks bootstrap (MBB) of Fitzenberger (1998) adopted in the paper for
testing the long-horizon predictability in stock returns. First, this section
briefly reviews structural break tests. Next, the MBB is introduced.

A. Structural Change Test

Recent advances in the econometrics of structural break now allow for
robust tests of parameter instability without assuming exogenous change
points. Among the proposed structural break tests, the moving sums
standardized residuals (MOSUM) test introduced by Chu, Hornik, and
Kuan (1995a) and the moving estimate (ME) test introduced by Chu,
Hornik, and Kuan (1995b) are particularly attractive since they dominate
the optimal average F- and exponential F-tests of Andrews and
Ploberger (1994) under various alternatives of double structural change.5

Rather, the MOSUM identification of the structural break is determined
endogenously based on the moving sums of fixed number of residuals by
the probability of a Wiener process crossing a pair of linear boundaries.6

Hence, the MOSUM test becomes more sensitive to temporal parameter
instability than the CUSUM test based on OLS residuals proposed by
Ploberger and Kramer (1992) since the later incorporates more residuals.7

This property of the testing procedure is particularly attractive in the
long-horizon regression where the overlapping returns carry out the
points of structural breaks across the horizon.

Unlike CUSUM, the MOSUM considers testing procedures where
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8. The sample period of Fama and French (1988) is from January 1926 to December

the empirical fluctuation process contains the sum of residuals in a data
window whose size is determined by a bandwidth parameter h 0(0,1)
and which is moved over the whole sample period. Chu, Hornik, and
Kuan (1995a) suggest considering the following OLS based MOSUM
empirical fluctuation process:

(0 # t # 1– h) (3a)( )0 1
/

nN t nh

n iM t h
n

ε
σ

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑

(3b)0 0,
,n n

n n

N t n h N t
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n n

+⎛ ⎢ ⎥ ⎢ ⎥ ⎞ ⎛ ⎢ ⎥ ⎞⎣ ⎦ ⎣ ⎦ ⎣ ⎦= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

where Nn = (n – lnhm)/(1 – h). As appears in (3b), the limiting process
of the MOSUM empirical fluctuation is a Brownian bridge.

Instead of defining the fluctuation process on the basis of the
residuals, the ME test fluctuation process is based on estimates of the
regression coefficients and determined by the increments of a vector of
Brownian bridge. This gives the ME process of the following
K-dimensional Brownian bridge specification:

(4)( ) ( ) ( ) ( )( ), ,/ ,
Tnt nh nt nh nT

n

nh
Z t h X X B

nσ
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞⎢ ⎥⎣ ⎦= −⎜ ⎟⎜ ⎟
⎝ ⎠

where 0 # t # 1– h and X is the vector of regressors.
Chu, Hornik, and Kuan (1995b) show that the ME test is consistent,

has nontrivial local power, and outperforms the fluctuation test of
Ploberger, Kramer and Kontrus (1989) and the sequential tests of
Andrews (1993) and Andrews and Ploberger (1994) when parameters
display temporal instability. Moreover, the test is robust to
heteroskedasticity and autocorrelation. More recently, Chu,
Stinchcombe, and White (1996) and Leisch, Hornik, and Kuan (2000)
develop a test for monitoring structural breaks when there is a new
arrival of observations to see if a change in regression coefficients
occurs after the new arrival. This could be attractive to insure that the
conclusion of this study is not derived by a different sample period since
our sample period (1926 – 2001) incorporates more data than others.8
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1985. McQueen (1992) expands the sample of Fama and French (1988) backward by
incorporating the monthly Cowles commission (1939) data and forward by incorporating the
monthly data of the years 1986 and 1987. The comparison of our results is based on the data
after January 1926.

9. For the monitoring test this paper follows the methodology suggested by Leisch,
Hornik, and Kuan (2000).

10. Efron and Tabshirani (1986) claim that both approaches are asymptotically equivalent
presumably when the covariance is assumed to be chosen from a probability distribution.

For the empirical analysis, this paper constructs three tests; the first
based on OLS residuals (MOSUM), the second based on the parameters
estimate (ME), and the last one is a forward looking test based on
monitoring the ME test.9 For the monitoring test, the paper chooses the
sample period of F&F from January 1926 to December 1985 as a
historical period, and the sample period from January 1986 to December
2001 as newly arrived data.

B. Moving Blocks Bootstrap (MBB)

Efron (1979) established the theory of Bootstrap to reduce the
finite-sample bias and yield an approximation to the distribution of an
estimator or test statistic that is at least as accurate as the approximation
obtained from first-order asymptotic theory. Efron suggests two basic
approaches to bootstrap the linear regression. One is to first fit the
model and apply the bootstrap to the residuals. The resulting covariance
estimate for this case is similar to that of the point estimate, except for
the degrees of freedom adjustment (see, Efron [1982]), for further
discussion). A second approach, with more general applicability, is the
Design-Matrix-Bootstrap, hereafter DMB. Under this approach, the
entire vector of the dependent variable and the regressors are
bootstrapped. So DMB provides a heteroskedastic consistent covariance
matrix, hereafter HC, since the errors are not resampled.10 Singh (1981)
contradicts the asymptotic validity of the bootstrap covariance estimator
in the case of autocorrelation. He notes that both approaches cannot
provide an autocorrelated consistent estimate, hereafter AC, in the linear
regression case. Wu (1986) claims that the Jackknife approach performs
better than the bootstrap particularly in the case of heteroskedastic
residuals. Lui (1988) introduces the wild bootstrap to solve the bias of
the autoregression parameter. Mammen (1993) establishes the ability of
the wild bootstrap to provide asymptotic refinements when the errors
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11. Hall et al. (1995) compare the wild bootstrap with the jackknife approximation of the
heteroskedasticity-consistent covariance matrix estimator of MacKinnon and White (1985) and
the bootstrap method of resampling the dependent and the independent variables. The results
show that the wild bootstrap provides a t-statistic with the lowest distortions.

12. Andrews (1991) discusses different Kernel HAC estimators used in the literature. He
shows that quadratic spectral kernel covariance estimator (QS) dominates Barlet kernel
suggested by Newey and West (1987) in terms of both RMSE and the true confidence interval
performance.

13. Fitzenberger (1998) shows that the result is hold whether the MBB is centering
around sample estimate or resample mean.

are heteroskedastic. Using Monte Carlo experimentation, Hall,
Horowitz, and Jing (1995) show that wild bootstrap performs better than
any version of HC estimator.11

The MBB approach adopted in this study is introduced independently
by the work of Kusch (1989) and Liu and Singh (1992) to provide a HAC
standard errors equivalent to the NW estimator. The MBB can be
implemented by dividing the data into blocks and the bootstrap sample
is obtained by sampling blocks randomly with replacement. To describe
the method of blocking the data, let the sample consist of observations
{yi,xi : i = 1, …,T}. With overlapping blocks of size b and length L = i +
b – 1, block Bi is the entire vector of blocks (By

i, B
x
j) with By

j = (yi , … , yi

+ b – 1), b X 1 vector, and Bx
i, a b X k matrix of regressors. The bootstrap

resample{( y*
i, x

*
i), …, ( y*

1, x
*
1)} of size l = bm is generated by drawing m

iid (b X [k + 1] ) blocks, call them {Z1, …, Zm}, from q = T – b + 1 blocks
Bi. The MBB resample is formed by laying {Z1, …, Zm}end-to-end in the
order sample. The resulting vector, {Zτv =  ( y*

i, x
*
i)}, is the MBB sample,

where τ = [(i – 1)/b]+1 and v = i – bτ.
Fitzenberger (1998) compares the performance of MBB with Barlett

kernel suggested by Newey and West (1987) and quadratic spectral
kernel (QS) suggested by Andrews (1991).12 The Monte Carlo
simulation shows that the MBB dominates both estimators in terms of
variance bias and coverage properties especially when the data exhibit
heteroskedasticity with increasing dependence i.e., the autocorrlealtion
is rising.13 The results show that the improvement in variance bias and
undercoverege is monotically increasing with block size. However, the
improvement of the root mean square error (RMSE) is not monotonic
with increasing b. Consistent with Hall, Horwitz, and Jing (1995), the
results show that the block size has to grow at the rate T1/3 to minimize
the RMSE of the variance estimate. This is identical to Andrews’ (1991)
optimal bandwidth.
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C. Model Estimation

We construct three subperiods for each structural break in the
non-overlapping returns for each horizon of the overlapping returns.
First, the overlapping generating process does not have a break point.
Second, the break point overlaps in the return horizon. Third, the
overlapping returns become free of the break point.

The following MBB specification of the first order autoregression is
used to test for the random walk hypothesis across subsamples:

(5), , , ,
1

j

n m

t t K K i K i K D j t k t t
i j

R C D Rα α β ε+ −
=

= + + +∑ ∑

where n and m is the number of structural breaks in the intercept and the
slope of the long horizon regression, respectively. C = 1 if t is in the ith

subhorizon and 0 otherwise, D = 1 if t is in the jth subhorizon and zero
otherwise, and the subscripts αK, αK,i, βK,Dj indicate the estimated
parameters for each subhorizon  i and j, respectively. The specification
in (3) allows the slope to display different points of structural breaks
than that of the intercept. This may be more convenient since we are
interested in estimating the slope of the autoregression. The null
hypothesis of interest is: 

, 0
j

m

K D
j

β =∑

against the alternative of a break-mean reversion model.

IV. The Data

The raw data for equally-and value-weighted returns, includes
dividends, for all stocks traded on the New York Stock Exchange
(NYSE) consist of end-of-month observations from January 1926 until
December 2001 are collected from the Center for Research in Security
Prices (CRSP). Following F&F, we transform the one-month returns
into continuously compounded form. The resulting nominal returns are
then adjusted for the inflation rate using the Consumer Price Index
(CPI) to get the real returns. The overlapping monthly returns on each
horizon are then calculated by summing up the real returns.
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V. Empirical Results

In this section, the paper first reports the results of stability tests based
on the empirical fluctuation test, individual parameters, and full
parameter vector for the value- and equally-weighted portfolio real
return. Next, the MBB estimates of the F&F autoregression for the
overall sample period and different subperiods selected on the basis of
the stability tests are reported.

A. Model Stability Test

Table 1 reports the results of the structural break tests in the
autoregression model for the value- and equally-weighted portfolio real
returns. Following Chu, Hornik, and Kuan (1995a, 1995b), the paper
sets the fixed number of residuals in a data window whose size is 20
percent of the effective sample when the MOSUM test is considered,
and the duration of parameter change to 50 percent when ME test is
considered.

Table 1 reports the results of structural break tests for the value-and
equally-weighted overlapping returns for 1-, 2-, 3-, 4-, 5-, 6-, 8- and
10-year horizons sequentially. The findings in table 1 provide strong
evidence that the autoregression test of the random walk hypothesis
displays structural breaks for monthly and overlapping monthly returns
over the effective sample period. The results are robust across the
MOSUM and ME tests and all p-values indicate a rejection of the null
hypothesis of parameter stability at 1% and 5% significance level. The
results are analogous to the individual parameters (the constant and the
parameter of lagged return) for the overlapping monthly returns. For
one-month portfolio returns we find no evidence of intercept instability,
non of the p-values below 5% significance level.

To gain some insight into the nature of the instability, figures 1-16
graph the values of MOSUM empirical fluctuation process supported by
a pair of linear boundaries computed at 5% critical value for the null
hypothesis of no structural change in the full parameter vector of
overlapping monthly returns. For both the value-and equally-weighted
overlapping returns, the maximum deviations in the statistic are
occurred around the first quarter of 70’s when the statistics sharply fall
down across all horizons. Also, the autoregression parameter vector
displays another structural break for the most of the horizons. For
equally weighted returns, the second structural break in the 1-, 2- and
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FIGURE 1—12-Month Equally Weighted Return Horizon

FIGURE 2—24-Month Equally Weighted Return Horizon
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FIGURE 3—36-Month Equally Weighted Return Horizon

FIGURE 4—48-Month Equally Weighted Return Horizon
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FIGURE 5—60-Month Equally Weighted Return Horizon

FIGURE 6—72-Month Equally Weighted Return Horizon
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FIGURE 7—96-Month Equally Weighted Return Horizon

FIGURE 8—120-Month Equally Weighted Return Horizon
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FIGURE 9—12-Month Value Weighted Return Horizon

FIGURE 10—24-Month Value Weighted Return Horizon
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FIGURE 11—36-Month Value Weighted Return Horizon

FIGURE 12—48-Month Value Weighted Return Horizon
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FIGURE 13— 60-Month Value Weighted Return Horizon

FIGURE 14—72-Month Value Weighted Return Horizon
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FIGURE 15—96-Month Value Weighted Return Horizon

FIGURE 16—120-Month Value Weighted Return Horizon
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3-year horizons occurred at the beginning of the 40’s, the 4-, 5- and
6-year horizons displays only one structural break, and the second shift
in 8- and 10-year horizons occurred around the end of 70’s. For value
weighted returns, the fluctuation process is clearer about the second
structural break. The results show that the second shift is occurred
around the beginning of 50’s across all horizons.

Figures 17-32 graph the values of ME test for the individual
parameters across the long horizon returns. The most critical finding in
the graphs is that, in the most cases, the structural break deducted
around the begging of 70’s is related to a shift in the intercept not to the
slope of the autoregression. In other words, the ME test provides
evidence that for the majority of the return horizons the date of
structural shift in the slope of the model differs than that for the
intercept. This result is very important when we test for random walk
using the autoregression model since we are interested in the value of
the slope rather than the intercept. For example, the value-and equally-
weighted returns displays a structural break in the intercept across all
horizon around the beginning of 70’s but value weighted 1-, 3-, 4- and
5-year return horizons displays no structural break in the slope at that
period. To summarize the results, table 2 reports the selected breakdates
for the overlapping monthly returns on the basis of MOSUM and ME
test statistics.

Three main results are revealed from the analysis. First, the main
structural break dates for those series’ occurred on the subhorizon
where the depression period returns are not overlapped. The strongest
peak and bottom for the considered tests indicate that the main shifts in
entire parameter vector and individual parameters occur around the
beginning of the 70’s or around the mid 80’s. Second, there is strong
evidence that the overlapping returns display a second structural break
where the depression period returns are overlapped. The MOSUM test
points out that the shift occurred around the beginning of 50’s and the
ME test clarifies that shift in the 50’s is generally related to the intercept
while the shift in the slope of the autoregression occurs at the begging
of the effective sample (the mid 40’s). Third, the structural breaks in the
intercept are fixed, around the beginning of the 50’s and 70’s, across the
horizons while the shift in the slopes are monotonic with horizon. Taken
together, graphs 1-18 and tables 1 and 2 provide the date and the nature
of the structural break for each single series.
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FIGURE 17—12-Month Equally Weighted Return Horizon

FIGURE 18—24-Month Equally Weighted Return Horizon
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FIGURE 19—36-Month Equally Weighted Return Horizon

FIGURE 20—48-Month Equally Weighted Return Horizon
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FIGURE 21—60-Month Equally Weighted Return Horizon

FIGURE 22—72-Month Equally Weighted Return Horizon
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FIGURE 23—96-Month Equally Weighted Return Horizon

FIGURE 24—120-Month Equally Weighted Return Horizon
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FIGURE 25—12-Month Value Weighted Return Horizon

FIGURE 26—24-Month Value Weighted Return Horizon
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FIGURE 27—36-Month Value Weighted Return Horizon

FIGURE 28—48-Month Value Weighted Return Horizon
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FIGURE 29—60-Month Value Weighted Return Horizon

FIGURE 30—72-Month Value Weighted Return Horizon
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FIGURE 31—96-Month Value Weighted Return Horizon

FIGURE 32—120-Month Value Weighted Return Horizon
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14.   When the number of blocks is set to one, i.e., the block size is 100% of the effective
sample; the MBB becomes identical to DMB since DMB is a special case of MBB.

15.   Hall, Horowitz, and Jing (1995) provide evidence that DMB dominates any version
of White HC estimator.

B. Robust Test of Random Walk

The autoregression in equation 1 was estimated for each return horizon
by both OLS and MBB for the whole sample period and subperiods
determined by Andrews (1993) and Andrews and Ploberger (1994)
stability tests. The OLS standard errors are corrected for autocorrelation
using HH estimator as in Fama and French (1988). Also, the test labeled
OLS-QS, reports OLS quadratic spectral kernel standard errors suggested
by Andrews (1991). These two tests sequentially provide AC and HAC
standard errors but do not correct for sample bias. To do so, the MBB test
described in section III B is estimated by setting an arbitrary numbers of
blocks from 1 to 15.14 The optimal number of blocks for each return
horizon is selected by choosing the block size that minimizes the RMSE
of the test variance based on 1000 resamples for each sample. Consistent
with Hall, Horowitz, and Jing (1995) the optimal number of blocks sets
around 10, which is the inverse of the number of observations cube root.
To gain better interpretation about heteroskedasticity and autocorrelation
effects, the paper also reports the result of DMB (MBB1).15 This test
solves for small sample bias and provides HC standard error that
dominant MacKinnon and White (1985) HC estimator.

Table 3 reports the results of random walk test for the period 1926
through 2001 using the tests described above. MBB (10) equally and
value weighted return reports slightly lower slope and higher p-value
than OLS-QS. However it is clear that there is no reliable evidence of
predictability when MBB is used except for holding periods 2- and
3-year value weighted returns and 3- and 4-year equally weighted
returns. For value weighted returns, the p-values at 2- and 3-year
holding periods are 0.012 and 0.016 respectively, imply the rejection of
the null hypothesis of random walk. The p-values for 3- and 4-year
equally weighted returns are slightly lower than 0.05. For the rest of
holdings period the hypothesis of random walk is accepted. The
p-values are high for the null to be rejected.

Some practical implication concerning autocorrelation,
heteroskedastisity and finite sample bias can be gleaned from our
results.  First, adjusting for heteroskedasticity and point estimate bias
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TABLE 4. Moving Blocks Bootstrap (MBB) of the First Order Autoregression
Slope βK,Dj ; CRSP Equally and Value Weighted Real Returns

Return Horizon (K months)
12 24 36 48

Panel A: Equally-Weighted
MBB:
ΒK,1 –0.068 –0.259 –0.301 –0.352

(0.502) (0.269) (0.152) (0.019)
ΒK,2 –0.332 –0.223 –0.376 –0.469

(0.072) (0.185) (0.010) (0.014)
ΒK,3 –0.435 –0.501

(0.001) (0.020)
Sum –0.399 –0.949 –1.179 –0.816
Wald Static 2.805 5.036 6.6429 7.227

(0.094) (0.024) (0.010) (0.007)
Optimal Number of Blocs 10 10 10 10
Panel B: Value-Weighted
MBB: 
ΒK,1 –0.065 –0.371 –0.345 –0.201

(0.719) (0.059) (0.009) (0.165)
ΒK,2 –0.159 –0.272 –0.331 –0.280

(0.132) (0.028) (0.058) (0.087)
ΒK,3 0.201 –0.005 0.080 0.162

(0.193) (0.962) (0.540) (0.307)
Sum –0.023 –0.649 –0.595 –0.315
Wald Static 0.006 6.902 3.441 0.633

(0.934) (0.009) (0.064) (0.426)
Optimal Number of Blocs 10 10 10 10

Return Horizon (K months)
60 72 96 120

Panel A: Equally-Weighted
MBB:
ΒK,1 –0.066 –0.173 0.005 0.032

(0.504) (0.098) (0.933) (0.664)
ΒK,2 –0.081 –0.273 –0.127 –0.112

(0.199) (0.034) (0.152) (0.298)
ΒK,3 –0.080

(0.786)
Sum –0.227 –0.447 –0.119 –0.079
Wald Static 0.459 4.238 0.810 0.203

(0.529) (0.040) (0.368) (0.653)
Optimal Number of Blocs 9 10 9 9

(Continued)
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TABLE 4. (Continued)

Return Horizon (K months)
60 72 96 120

Panel B: Value-Weighted
MBB:
ΒK,1 –0.096 –0.057 –0.036 0.032

(0.352) (0.588) (0.791) (0.804)
ΒK,2 –0.120 0.031 –0.125 –0.232

(0.050) (0.935) (0.205) (0.013)
ΒK,3 0.121 0.305 0.238 0.019

(0.696) (0.017) (0.012) (0.878)
Sum –0.096 0.279 0.076 –0.180
Wald Static 0.112 0.737 0.078 0.481

(0.737) (0.391) (0.780) (0.488)
Optimal Number of Blocs 10 9 9 9

Note:  The test is based on the following specification:

 . Figures in parentheses are p-values. , , , ,
1

j

n m

t t K K i K i K D j t k t t
i j

R C D Rα α β ε+ −
=

= + + +∑ ∑

but not autocorrelation in testing for the random walk in stock prices is
strongly bias toward rejection the null. The resulting p-values from
DMB estimation are too much small in comparison to that of QS and
MBB. Second, consistent with F&F, bias adjustment is not large enough
to disturb the results. The resulting MBB p-values are comparable to that
of QS for the majority of holding periods. Finally, autocorrelation plays
the most important roll in the estimation. The results can be gleaned
from comparing MBB and DMB.

Table 4 reports the results of the MBB test for the autoregression
specification in 10 after adjusting for structural break points reported in
table 3. For equally weighted returns, the paper doesn’t find any
evidence of mean aversion behavior in stock prices, all the
autocorrelations are negative across subperiods. As expected by the
model, the stationary component of stock prices is slower than that
estimated using the specification of F&F. The p-values of the Wald
statistics for the hypothesis that the sum of the slopes are equal to zero
for 2-, 3-, 4- and 6-year horizons are 0.249, 0.010, 0.007, and 0.004,
respectively. This suggests the rejection of the random walk hypothesis
for those horizons. 

For value weighted portfolios, the paper reports positive
autocorrelations only in the third subperiod (after 70’s in general). This
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suggests that the parameter of the structural break in the transitory
component is negative for this subperiod. In contrast, the model expects
that the absolute value for the sum of the autocorrelations will decline
for those horizons that display mean aversion. (i.e., we expect weaker
mean reversion behavior for value weighted returns).

Table 4 panel (B) reports the p-values of the Wald statistics for value
weighted returns, the 3- and 10-year autocorrelations for value waited
returns is not significantly different from zero. However it is clear that
there is no reliable evidence of predictability for value weighted
portfolios except for the holding period of 2-year.

VI. Conclusion

The results of this paper suggest that observed mean reversion in prior
tests, based on simulated OLS first order autoregression, is understated
due to a) size distortions resulting from the use of long-horizon returns;
b) the non Gaussian distribution of returns; c) the clustering
heteroskedasticity and autocorrelation in the overlapping returns; and
d) the structural breaks in the data generating process. Three main
results are revealed from the analysis of structural breaks. First, the
most important structural break dates for those series’ occurred on the
subhorizon where the depression period returns are not overlapped. The
strongest deviation for the considered tests indicate that the main shifts
in entire parameter vector and individual parameters occur around the
beginning of the 70’s or around the mid 80’s. Second, there is strong
evidence that the overlapping returns display a second structural break
where the depression period returns are overlapped. The MOSUM test
indicates that the shift occurred around the beginning of 50’s and the
ME test clarifies that shift in the 50’s is generally related to the intercept
while the shift in the slope of the autoregression occurs at the begging
of the effective sample (the mid 40’s). Third, the structural breaks in the
intercept are horizon-independent while the shift in the slopes are
monotonic with horizons. After adjusting for structural break in the
long-horizon returns, the MBB test rejects the random walk hypothesis
across 2-, 3-, 4-, and 6-year horizons for equally weighted portfolios.
However, it is clear that there is no reliable evidence of predictability
for value weighted portfolios except for the holding period of 2-year.
Adaptive point estimates of the autocorrelation parameters all give
strong evidence of heavy size distortions and support the use of robust
estimation method.
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