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In this paper we present a model for valuing European and American
options, which incorporates both default and interest rate risks. We develop a
framework that permits evaluation of three kinds of options: (i) options issued
by default-free counterparties on risky bonds, (ii) options issued by risky
counterparties on default-free bonds and (iii) options issued by risky
counterparties on risky bonds — a case where default risk enters at both levels.
We show that the price of a put option on a risky discount bond is hump shaped
for a European put and monotone increasing for an American put. We also find
that the price impact of default risk is less for an American put option than for
a European one (JEL: G13).
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I. Introduction

In the finance literature, default risk was first modeled by Black and
Scholes (1973) and Merton (1974), and then extended by Black and Cox
(1976), Shimko, Tejima, and van Deventer (1993), Nielsen,
Saá-Requejo, and Santa-Clara (1993), Longstaff and Schwartz (1995a),
Briys and De Varenne (1997), and many others. These authors model
corporate bonds and credit spreads. The purpose of this paper is to
provide an efficient model, which can be used to price European and
American options on bonds in the presence of default and interest rate
risks. Three classes of options have been identified and analyzed. The
first is when only the bond underlying the option is subject to default
risk. The second is when only the issuer of the option is subject to
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default, and the third is when default risk enters at both levels, which is
the case of options issued by a risky writer on risky bonds.

Since the early 1990’s, the pricing of options with default risk is a
topic that has been discussed in increasing detail within finance
literature. Johnson and Stulz (1987) were the first to develop a model
for pricing European options issued by a risky writer, called vulnerable
options. Their assumption is that interest rates are constant and default
occurs when the value of the option exceeds the value of the assets of
the counterparty upon exercise. Hull and White (1995) have extended
the Johnson and Stulz (1987) model when default can occur at any time
prior to maturity of the option. They postulate that default occurs if the
value of the assets of the option writer falls below a specified default
boundary, and that only a fraction of the nominal amount of a claim is
paid out in case of default. However, their work does not consider the
situation where the underlying assets are subject to default risk.

Das (1995) has presented a valuation method for options on the
credit risk of a corporate debt. He has developed a pricing formula
where interest rates are assumed to be constant and where the dynamics
of interest rates are derived from the term structure model of Heath,
Jarrow and Morton (1992). Das (1995) has not studied vulnerable
options. Jarrow and Turnbull (1995) have used a foreign currency
analogy for pricing vulnerable options and options on risky bonds. They
assume that the two processes — generating the interest rate and the
bankruptcy, respectively — are independent.

This paper is organized as follows: Section II provides the notations
and presents the valuation framework. Section III presents the valuation
model and simulation results for options on risky bonds. Section IV
presents the valuation model for vulnerable options on risk-free bonds,
and section V derives a valuation model and simulation results when
two sources of default risk are present - the case of vulnerable options
on risky bonds. Conclusions are made in section VI.

II. The Valuation Framework

Assumption 1. We assume perfect and frictionless markets. Trading
takes place continuously. There are no taxes nor transaction costs.

Assumption 2. Let S0(t) denote the riskless security. Its dynamics are
given by:
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where r denotes the short-term riskless interest rate. The dynamics of r

are given by: , (1)( ) r rdr a b r dt rdzσ= − +

where a, b, and σr are constants and zr is a standard Wiener process. The
assumption regarding the dynamics of r is derived from the term
structure model of Cox, Ingersoll and Ross (1985). As it does not allow
negative rates, this model fits the dynamics of interest rate better than
the Ornstein-Uhlenbeck process.

Assumption 3. Let V be the total value of the assets of the firm. The
dynamics of V are given by:

, (2)( ) v vdV d Vdt Vdzμ σ= − +

where μ and σv are constants and zv is a standard Wiener process. The
processes zr and zv are correlated and the instantaneous correlation
between dzr and dzv is ρdt. We allow for a constant payout rate to the
investors of the firm, d. We assume that the value of the firm does not
depend on the capital structure of the firm. This is the standard
assumption that the Modigliani-Miller Theorem holds. In the modelling
approach adopted in this paper, we consider a firm whose capital
structure may include a variety of debts with different maturity dates
and coupon rates.

Assumption 4. Default occurs at the first date at which the value of
the firm's assets fall below a critical level. This critical level is defined
as the total value D of the debt faced by the firm. We assume that the
process followed by D is:

(3)
( )( )
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,

,

dD r t t
r t dt

D r t t
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where δ is a constant payout rate to the debtholders of the firm. It is
usually assumed that default is triggered when the value of the assets of
a firm falls below a constant default barrier, e.g. Longstaff and Schwartz
(1995a), and Kim, Ramaswamy, and Sundaresan (1993). This
assumption presents some degree of inconsistency for it implies that the
default barrier should be the same for all debts of the firm whatever
their maturity dates are.
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In practice, and as reported by Saá-Requejo and Santa-Clara (1999),
default occurs when the value of the firm falls below the value of the
liabilities (stock-based insolvency) or when the firm fails to make a cash
payment (flow-based insolvency). Our default barrier is defined as the
face value of the liabilities. Hence, the drift of D(r(t),t) depends on time
and on the riskless interest rate.

Assumption 5. In case of default only a fraction (1 – η) of the
no-default value of the security is paid at default date. Although, the
percentage writedown on a security in case of default depends on its
seniority, we shall assume for simplicity that η is a constant.

Under the risk neutral probability measure, the dynamics of r and V
are given by:

, (4)( )[ ]r r rdr a b r r dt rdwλσ σ= − − +

(5)( ) ,v vdV r d Vdt Vdwσ= − +

where λ is a constant and  is the market price of the interest raterλ
risk. wr et wv are two standard Wiener processes under the risk neutral
probability and ρdt is the instantaneous correlation between dwr and
dwv.

Let   denote value at time t of a defaultable discount bond( ), ,B t r V

contingent on the value of V and r and promising M + C dollars at date
Tb $ t. Using assumptions 1, 2 and 3 as well as equations (4) and (5), the
value of the defaultable discount bond must satisfy the following
fundamental partial differential equation:

(6)

( ) ( )[ ]
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The subscripts denote first and second order partial derivatives with
respect to r, V and t. The value of the defaultable discount bond is
obtained by solving equation (6) subject to the appropriate boundary
conditions. At maturity, the bondholder would receive the face value of
the bond if default did not occur during its life:
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(7)( ), , .bB T r V M C= +

We propose to solve equation (6) using modified version of the explicit
finite difference method suggested by Hull and White (1990). Brennan
and Schwartz (1978) have shown that the explicit finite difference
method is equivalent to a trinomial lattice approach. They have also
shown how a transformation of variables ensures convergence when
stock options are being valued. Hull and White (1990) have modified
the explicit finite difference method and have used both a
transformation of variables and a new branching process.

As Brennan and Schwartz (1978) and Hull and White (1990)
demonstrate, it is appropriate to make a transformation of variables to
obtain constant instantaneous standard deviation. From equations (4)
and (5), the appropriate transformations of r and V are:

(8)X r=

(9)( ).Z Ln V=

From Ito's lemma, the processes followed by X and Z under the risk
neutral probability measure are:

(10)( ) rdX A X dt gdw= +

where ,
2

rg
σ

=

( ) ( )
24

,
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r
r

ab X
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X

σ λσ−= − +

and . (11)
2

2
v

v vdZ r d dt dw
σ σ⎛ ⎞= − − +⎜ ⎟

⎝ ⎠

The next stage is to transform variables again in order to eliminate the
correlation between dwr and dwv. Let Y denote the new variable defined
as follows:
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1.  See Hull and White (1990, p. 94).

2. The Δt2 terms are ignored.

where . (12)Y Z Xα= − 2 v

r

σα ρ
σ

=

From Ito's lemma, the process followed by Y under the risk neutral
probability measure is:

( ) ,vdY H X dt fdw= +

where ( ) ( )
2

2 ,
2

vH X X d A X
σ α⎛ ⎞= − − −⎜ ⎟

⎝ ⎠

and . (13)21vf σ ρ= −

 is a new Wiener process, uncorrelated with wr and defined asvw

follows: (14)21 .v r vdw dw dwρ ρ− = −

To implement the explicit finite difference method, we divide the time
interval [t0,Tb] into n subintervals [ti, ti+1] of equal length, where ti = t0

+ iΔt, Δt = ,i = 1,ÿ,n. We denote X0 + jΔX and Y0 + kΔY0bT t

n

−

respectively, by Xj and Yk. The relationship between ΔX, ΔY and Δt is:1

 

3  and 3X g t Y f tΔ = Δ Δ = Δ

The partition of the (t,X,Y) space forms a grid. Let (i, j, k) denote the
node of the three dimensional grid representing the point of coordinates
ti = t0 + iΔt, X0 + jΔX and Y0 + kΔY, with i = 1,ÿ, n and j,k = –i,ÿ, i.
Brennan and Schwartz (1978) and Hull and White (1990) show that the
explicit finite difference method is equivalent to a trinomial lattice
approach. For instance, Xj can reach three possible values Xj + ΔX , Xj

and Xj – ΔX at time Ti + 1. The probabilities of moving from Xj to Xj + 1, Xj

and Xj – 1 are chosen to respect the first and second moments of the
change in X in the time interval Δt , and to make the sum equal to unity:2
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3. See Hull and White (1990, p. 95).

qj, j + 1 + qj, j + qj, j – 1 = 1,

qj, j + 1 (ΔX) + qj, j – 1 (–ΔX) = E[X(t + Δt) – X(t)],

qj, j + 1(ΔX)2 + qj, j – 1(–ΔX)2 = E[(X(t + Δt) – X(t))2],

where qj, j + 1, qj, j and qj, j – 1 are the probabilities of moving from Xj to
Xj+ 1, Xj and Xj – 1 respectively. It is possible to verify that this discrete
time process converges towards the underlying continuous-time process
as Δt 6 0. It can be clearly expressed that:

,
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Since X can take any positive value, A(X) is not bounded. It follows
that, in some situations, the standard explicit finite difference method
may not ensure positive probabilities and convergence. A modified
method should then be used, as described in Hull and White (1990),
whom have proposed alternative branching procedures to ensure that the
probabilities associated with all three branches remain positive. It can
be shown that the constraint of positivity implies that Xmin # X #Xmax,
where:3
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FIGURE 1.— Alternative Branching Procedures. (a) is the standard
branching procedure, (b) is the procedure when Xmin is reached and (c)
is the procedure when Xmax is reached.

and .
2

X

t
β Δ

=
Δ

Figure 1 shows three possible branches in the tree. When the value
Xmin is reached, a new branching procedure is used (figure 1(b)) and the
three possible values that could be reached by Xj after Δt are Xj, Xj + ΔX
and Xj + 2ΔX. When the value Xmax is reached, the branching procedure
used is described in figure 1(c) and the three possible values that could
be reached by Xj after Δt are Xj, Xj – ΔX and Xj – 2ΔX. The branching
probabilities in these cases are obtained in the same way as they are in
the case of figure 1(a).
When Xmax is reached:
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When Xmin is reached:
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Since H(X) depends only on X, H(X) is bounded. It follows that, for
the variable Y , the branching procedure used corresponds to figure 1(a).
At each node of the trinomial lattice, Yk  can reach three possible values
Yk + ΔY, Yk and Yk – ΔY in the time interval Δt. It is easy to verify that
the branching probabilities in this case. They are: 

( ) ( )2 2

, 1 2

1
,

6 2 2k k

H X t H X t
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= + +
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where pk,k + 1, pk,k and pk,k – 1 are the probabilities of moving Yk to Yk + 1, Yk

and Yk – 1 respectively.
The objective of this paper is to apply modified version of the

explicit finite difference method, as presented above, to the valuation of
European and American options on bonds in presence of default risk.
Three types of options need to be distinguished: (i) options issued by
default-free counterparties on risky bonds, (ii) options issued by risky
counterparties on default-free bonds and (iii) options issued by risky
counterparties on risky bonds, a case where the default risk enters at
both levels.
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III. Pricing Options on Defaultable Bonds

In this section, we apply the modified explicit finite difference method
presented above to the valuation of options on risky bonds, where only
the issuers of the bonds are subject to default risk. Let (t, X, Y) denote
the three dimensional space where  t0 is the current time, Tb[ ]0, ,bt t T∈
is the maturity of the risky bond, and Tp # Tb is the maturity of a
European or an American put with strike price K on the risky bond.

A. Valuing Options on Risky Discount Bonds

For simplicity we consider the case of options on a risky discount bond.

Let be the value of a risky zero-coupon bond at node (i, j, k) = (ti,, ,i j kB

Xj, Yk). According to assumptions 4 and 5, default occurs at the first date
at which the value of firm's assets falls below the nominal value of the
debts faced by the firm, and in case of default only a constant fraction
of the no-default value of the bond is paid at default date. At maturity,
the value of the risky discount bond is:

(15)
( ) ( )

( )( ) ( ) ( ), ,

if
,

1 if
n n

n j k
n n

M C D t V t
B

M C D t V tη
+ ≤⎧ ⎫= ⎨ ⎬− + >⎩ ⎭

where V(tn) = exp(Yn,k +αXn,j), (16)

D(tn) = D(t0)exp((X2
n,j – δ)nΔt) for all j, k = –n,ÿÿ,n, (17)

and η is the percentage writedown on the risky discount bond in the case
of default. The value of the risky discount bond prior to maturity can be

calculated using the risk-neutral valuation. The value of at time T isB

known. The value of at time ti is equal to the expected value at timeB
ti + 1, in a risk neutral world, discounted at time ti using the risk-free
interest rate. Since the probabilities obtained in section II are

risk-neutral, the price at node (i, j, k) of a risky discount bond is, ,i j kB

obtained from its prices at all nodes in the next period through the
backward equation:
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for all
i = n – 1,ÿÿÿ,0 and j,k = – i,ÿÿÿ,i, (18)

 
 and denotes expectations under the risk neutral probability, Q.

ti
QE

Let and be the values of a European and an American, ,i j kPE , ,i j kPA
put options written on a risky discount bond at node (i, j, k). At maturity
Tp, the values of these puts are:

, , , , , , max ;0 ,m j k m j k m j kPE PA K B⎡ ⎤= = −⎣ ⎦

where (19)0 ,pT t
m

t

−
=

Δ

and j, k = –m,ÿÿÿ,m.
 
Before maturity, the values of these puts are obtained by backward

equations in the same way as they are for :, ,i j kB

(20)( ) ( )2

, , 1, , ,j i
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X t t
i j k i j kQPE E PE e− Δ

+=

(21)( ) ( )2

, , 1, , , ,max ; ,j i

ti

X t t
i j k i j k i j kQPA E PA e K B− Δ

+⎡ ⎤= −⎣ ⎦

where i = m –1,ÿÿÿ,0 and j, k = –i,ÿÿÿ,i.
 

Simulated results for put options on risky discount bonds are
reported in table 1, table 2 and figure 2. The parameter values used are
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TABLE 1. Prices of European and American Put Options on Risky Discount Bond
for Different Values of D/V.

D/V Tp European Put Value American Put Value

1 0.5495 0.6346
2 0.8072 0.8963

0.40 3 1.0512 1.1757
4 1.2026 1.5126
5 0.4643 1.9455

1 2.2071 2.3146
2 3.0239 3.2403

0.50 3 3.5214 4.0919
4 3.6641 5.0324
5 1.2397 6.0723

1 4.8042 4.9317
2 6.3190 6.9924

0.60 3 6.9397 8.8191
4 6.9301 10.6416
5 1.8082 12.2362

Note: The parameter values used are Tb = 5, a = 0.03578, b = 0.03435, σr = 0.00725, λ
= 1%, d = 0.05, σv = 0.2, ρ =–0.25, r = 0.0318, η = 0.5, Δt = 0.05, δ = 0.08, M = 100, C = 5

and K = (0,5).B

K = (0,5), M = 100, C = 5, r = 0.0318, a = 0.03578, b = 0.03435, σr =B
0.00725, λ = 1%, σv = 0.2, d = 0.05, δ = 0.08, η = 0.5 and Δt = 0.05. In
our model, the factor η represents the percentage writedown on a
security in case of default. On a sample of defaulted bond issues during
the 1985 to 1991 period, Altman (1992) reports average writedown rates
ranging from 39% to 80% depending on the seniority of the issue.
Values of a, b and σr are based on empirical tests of the Cox, Ingersoll
and Ross model made by Belhaj (2002) on french data. The other
parameters correspond to a standard calibration.

The effects of capital structure are reported in table 1. Capital
structure is reflected by the ratio D/V. In table 1, we vary the ratio D/V
from 0.4 to 0.6. Several interesting observations can be made. First, and
as expected, the value of a put option on a risky discount bond is an
increasing function of D/V. When the ratio D/V increases, the price of
a risky discount bond decreases, and thus the value of the put increases.
Second, the value of the American put is higher than that of the
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FIGURE 2.— Values of European and American Put Options on Risky
Discount Bond for Different Values of D/V. The parameter values used
are Tb = 5, a = 0.03578, b = 0.03435, σr = 0.00725, λ = 1%, d = 0.05, σv

= 0.2, ρ = –0.25, r = 0.0318, η = 0.5, Δt = 0.05, δ = 0.08, M = 100, C =

5 and K = (0,5).B

European put. The reason for this is because the holder of an American
put on a risky discount bond, can decide to exercise it early in order to
alleviate the impact of the default risk.

Table 1 and figure 2 show the effects of put maturity Tp when the
risky discount bond's maturity is fixed at 5 years. One can see that the
value of the American put is a monotonic increasing function of Tp.
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TABLE 2. Prices of European and American Put Options on Risky Discount Bond
for Different Values of η and σv.

η σv Credit Spreads European Put Value American Put Value
(Basis Points)

0.15 36.63 0.4170 0.4745
0.25 0.20 163.57 2.7169 2.9197

0.25 379.16 5.7509 6.2211

0.15 41.14 0.4956 0.5601
0.50 0.20 182.31 3.0239 3.2403

0.25 417.16 6.1810 6.6870

0.15 43.24 0.5327 0.6002
0.75 0.20 190.77 3.1601 3.3828

0.25 434.10 6.3630 6.8877

Note: The parameter values used are Tb = 5, Tp = 2, a = 0.03578, b = 0.03435, σr =
0.00725, λ = 1%, d = 0.05, ρ = –0.25, r = 0.0318, D/V = 0.5, Δt = 0.05, δ = 0.08, M = 100,

C = 5 and K = (0,5).B

However, when D/V = 0.4, the maximum value for the European put
occurs with a maturity of about 4.25 years. However, when D/V = 0.8,
the maximum value for the European put occurs with a maturity of
about 2.75 years. This is because the value of a European put on the
risky discount bond contains both the time value from the put option
and the time value from the risky discount bond, which is also an option
on firm value. The time value of the risky discount bond decreases when
both D/V increases and Tp 6 Tb.

Table 2 shows the effects of the percentage writedown η on the risky
discount bound in case of default and the volatility σv on European and
American put values. When η increases, the credit spread increases and
the European and American put values increase as a result. For instance,
when σv = 0.2, as η increases from 0.25 to 0.75, the European and
American put values increase from 2.7169 and 2.9197 to 3.1601 and
3.3828, respectively. Consequently, the percentage increase on the price
is significantly less for an American put than it is for a European put.

It is also apparent from table 2 that if σv increases, then there is a

tendency for to decrease and for the value of the put option toB
increase. When η = 0.5 the credit spread increases from 41.14 to 417.16
basis points as σv increases from 0.15 to 0.25 and the values of European
and American put options increase from 0.4956 and 0.5601 to 6.1810
and 6.6870, respectively. Thus, the impact of default risk on the price
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of American put option is less important than it is on the price of a
European put option.

B. Valuing Options on Risky Coupon Bonds

In this section, we extend the discrete time model presented in the
previous subsection to value options on risky coupon bonds. Longstaff
and Schwartz (1995a) and Cathcart and El-Jahel (1998) developed a
model in which risky coupon bonds can be valued as simple portfolios
of discount bonds. This decomposition presents some inconsistency in
the sense that the default barrier is assumed to be constant (independent
from the maturity of the discount bond) and the same for all discount
bonds. Geske (1977) used the contingent claim approach to value
coupon bonds with a constant interest rate. He states, therefore, that a
corporate coupon bond can be evaluated as a compound option.

Let be the value at node (i, j, k) = (ti, Xj, Yk) of a risky coupon, ,i j kB
bond promising N coupons. At maturity, the value of the risky coupon
bond is obtained in the same way as for a discount bond by equation
(15). At time ti, the value of risky coupon bond under the risk neutral
probability is:

(22)( ) ( )
( ) ( ){ }( )2

, , 1, , 1 ,j i

t i ii

X t t
i j k i j ki Q D t V tB C E B e Iη− Δ

+ >
⎡ ⎤= + −⎣ ⎦

where Ci is the coupon paid at the end of period i, i = N – 1,ÿÿÿ, 0, and
j, k = –i,ÿÿÿ,i. Given the value of the risky coupon bond at each node
(i, j, k) of the three-dimensional lattice, the values of European and
American put options are obtained from equations (19), (20) and (21).

C. Valuing Options on Risky Convertible Bonds

An advantage of the discrete time approach adopted in this paper is that
it can be easily extended to value options on risky convertible bonds. In
this subsection, we examine the effects of default risk on options written
on a risky convertible bonds. A convertible bond is a hybrid bond which
allows its bearer to exchange it for a given number of shares of stock
anytime before the maturity date of the bond. As a consequence, a
convertible bond is equivalent to a portfolio of two securities: a
non-convertible bond with the same coupon rate and maturity as the
convertible bond, and a call option written on the stock of the firm. The
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4. I assume that the convertible bond is non callable by the issuer and non putable for
a cash amount by the holder.

early conversion feature makes the convertible bond similar to an
American option. Brennan and Schwartz (1977), Kim, Ramaswamy, and
Sundaresan (1993), and Tsiveriotis and Fernandes (1998) have analyzed
the valuation of corporate convertible bonds, but their work does not
examine the case of options on these bonds.

In this subsection, we apply the modified version of the explicit
finite difference method to the valuation of options written on a

corporate convertible bonds. We consider a convertible bond, ,
c

B
maturing at time Tb, convertible at any time to shares of the underlying
stock, and paying at expiration M + C if not converted. At maturity date,
the value of the risky convertible bond is:4

(23)

( ) ( )( ) ( ) ( )

( ) ( )

( )( )
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if

if 0
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n n n n
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+⎧ ⎫Ω − − ≥⎪ ⎪Ω⎪ ⎪
+⎪ ⎪= + ≤ − <⎨ ⎬Ω⎪ ⎪

⎪ ⎪− +
⎪ ⎪⎩ ⎭

where Ω is the conversion ratio and indicates the number of underlying
stock shares into which the bond may be converted. In the same way as
for a non-convertible bond, the value of a risky convertible bond before
maturity is obtained using backward equations in relation to conversion
and default conditions at each node of the branching tree. Thus, the
values of European and American options written on this bond are
obtained from equations (19), (20) and (21).

Figure 3 plots the value of a European put option written on a
convertible bond with and without default risk as a function of the value
of the firm. We assume that the put option is at-the-money and the
conversion ratio is equal to 0.5. As the value of the firm goes to infinity,
the default probability decreases and thus the value of a put option on
the risky convertible bond converges towards the value of a put option
on a default-free convertible bond. In the case where the value of the
firm falls, it will not be optimal to convert the bond and, as shown in the
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FIGURE 3.— Values of European Put Option on Convertible Bond with
and without Default Risk. The parameter values used are Tb = 5, Tp = 2,
a = 0.03578, b = 0.03435, σr = 0.00725, λ = 1%, d = 0.05, σv = 0.2, ρ =
–0.25, r = 0.0318, η = 0.5, Δt = 0.05, D = 200, δ = 0.08, M = 100, C =

5, Ω = 0.5 and K = (0,5).B

previous section, the value of a put option is an increasing function of
ratio D/V. Such is not the case for a put option on a default free
convertible bond.
 

IV. Pricing Vulnerable Options

When an option is priced, it is usually assumed that there is no risk that
the counterparty writing the option will default. But as the
over-the-counter market develops, the default risk of the option writer
becomes very significant. Johnson and Stulz (1987) have derived
pricing formulas for vulnerable European options where the option has
been assumed to be the sole liability of the counterparty.

In this section, we examine the impact of default risk of the option
writer on European and American options' prices. For convenience, we
assume that the asset underlying the option is a default-free discount
bond. Let B(t, r) denote value at time t of a default-free discount bond
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promising M + C  dollars at date Tb and CEv and CAv be the values of
European and American call options written on a risk-free discount
bond, respectively, with strike price K and expiry date Tc # Tb. In the
present case, V and D designate the value of the assets and the value of
the debts of the firm of the option writer, respectively. Applying the
valuation model presented in section II, the values of European and
American call options at date Tc are:
 

( ) ( ){ }( ), , , , ,max ;0 1 ,
m m

v v
m j k m j k m j D t V tCE CA B K Iη >= = − −⎡ ⎤⎣ ⎦

TABLE 3. Percentage Reduction Arising from Default Risk in the Prices of
Vulnerable European and American Call Options.

Tc European Call American Call

Panel A: Call Options are at-the-money K = B(0,5) = 89.4743

0.5 0.00 0.00
1.0 0.02 0.01
1.5 0.20 0.11
2.0 0.74 0.38
2.5 1.63 0.82
3.0 2.82 1.39
3.5 4.22 2.07
4.0 5.77 2.83
4.5 7.44 3.63
5.0 9.14 4.47

Panel B: Call Options are out-of-the-money K = 95, B(0,5) = 89.4743

0.5 0.00 0.00
1.0 0.00 0.00
1.5 0.00 0.00
2.0 0.38 0.35
2.5 1.45 1.33
3.0 2.70 2.26
3.5 4.14 3.22
4.0 5.72 4.22
4.5 7.41 5.23
5.0 9.14 6.25

Note:  The parameter values used are Tb = 5, D/V = 0.5, a = 0.03578, b = 0.03435, σr

= 0.00725, λ = 1%, d = 0.05, σv = 0.2, η = 0.5, ρ = –0.25, r = 0.0318, Δt = 0.05, δ = 0.08,
M = 100, and C = 5.
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5. The holder of the vulnerable American option is fully informed about V and D and
he decides to exercise when D is just below V. This is not the case for a default-free American
option.

0 ,cT t
m

t

−
=

Δ

j, k = –m,ÿÿÿ,m.

V(tm) and D(tm) are obtained from equations (16) and (17), respectively.
At node (i, j, k), the values of call options derive from the following
backward equations:

(24)( )
( ) ( ){ }( )2

, , 1, , 1 ,j i

t i ii

X t tv v
i j k Q i j k D t V tCE E CE e Iη− Δ

+ >= −⎡ ⎤⎣ ⎦

( )( ) ( ) ( ){ }( )2

, , 1, , ,max ; 1 ,j i

t i ii

X t tv v
i j k Q i j k i j D t V tCA E CA e B K Iη− Δ

+ >= − −⎡ ⎤⎣ ⎦

(25)
i = m –1ÿÿÿ,0,
j, k = –i,ÿÿÿ,i.

Table 3 shows the effect of the option maturity Tc on the vulnerable
European and American call options prices. In panel A and panel B, the
option maturity is varied from 0.5 year to 5 years, the bond maturity
being fixed at 5 years. It appears that the percentage reduction in the
option price increases with option maturity ; this is because the default
risk of the option writer itself increases with respect to maturity. For
example, as shown in panel A of table 3, the percentage reduction in the
price of a vulnerable European call at-the-money is equal to 2.82
percent when the option time to maturity is fixed at 3 years and is equal
to 9.14 percent when the option time to maturity is fixed at 5 years.

It is also apparent from table 3 that the percentage reduction in
vulnerable option prices is less for an American option than for a
European one. As noted in subsection III A, the reason for this is that
the American option holder can decide to exercise early in order to
eliminate the impact of default risk.5 For instance, when the option time
to maturity is fixed at 4 years, the percentage reduction in the price of
a vulnerable European option at-the-money is equal to 5.77 percent and
it is equal to 2.83 percent for a vulnerable American option.
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Table 4 provides results for the percentage reduction in the prices of
vulnerable European and American options for different values of r and
D/V. As the default risk increases with the ratio D/V, the percentage
reduction in the vulnerable option prices is an increasing function of
D/V. It can also be seen from table 4 that the vulnerable American
option is less sensitive to default risk than the European one.

Table 4 also shows that the percentage of price reduction for a
vulnerable call option decreases as the riskless interest rate increases.
This is explained by the fact that when the interest rate tends to infinity,
both the default-free and vulnerable options are worthless and the
percentage reduction should tend to zero.

V. Pricing Vulnerable Options on Risky Bonds

In this section we examine the case of options issued by a risky writer
on risky bonds, a case where two sources of default risk are present. Let
V1 be the total value of the assets of the bond issuer, and V2 be the total
value of the assets of the option writer. According to assumption 3, the
dynamics of V1 and V2 under the risk neutral probability are given by:

,( )
1 11 1 1 1v vdV r d V dt V dwσ= − +

TABLE 4. Percentage Reduction Arising from Default Risk in the Prices of
Vulnerable European and American Call Options.

D/V
r (%) 0.30 0.50 0.70

2.18 European Call 0.00 0.72 15.73
American Call 0.00 0.48 12.28

3.18 European Call 0.00 0.38 11.07
American Call 0.00 0.35 10.95

4.18 European Call 0.00 0.00 0.00
American Call 0.00 0.00 0.00

Note:   The parameter values used are Tb = 5, Tc = 2, a = 0.03578, b = 0.03435, σr =
0.00725, λ = 1%, d = 0.05, σv = 0.2, η = 0.5, ρ = –0.25, Δt = 0.05, δ = 0.08, M = 100, C = 5,
and K = 95.
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, ( )
2 22 2 2 2v vdV r d V dt V dwσ= − +

where . In the
1 1 2 2 1 2 1 2, , ,,  and v r r v v r r v v v v vdw dw dt dw dw dt dw dwρ ρ ρ= = =

same way as when there is only one source of default risk, the
appropriate transformations of V1 and V2 are:

Y1 = 1n(V1) – α1X

Y2 = 1n(V2) – α2X.

From Ito's lemma, the processes followed by Y1 and Y2 are:

( ) 11 1 1 ,vdY H X dt f d w= +
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where is a new Wiener process, uncorrelated with wr and defined as1vw

follows: 11 1 1

2
, ,1 ,vv r v r r vdw dw d wρ ρ− = −

( ) 22 2 2 ,vdY H X dt f d w= +
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2

22 ,2 ,v
r v

r

σ
α ρ

σ
=

where is a new Wiener process, uncorrelated with wr and defined2vw

as follows:

22 2 2

2
, ,1 .vv r v r r vdw dw d wρ ρ− = −

It is also appropriate to make another transformation in order to offset

correlation between  et . Let Y3 denote a new variable such that:1vw 2vw

Y3 = Y2 – α3Y1 ,

1 2

2
3 ,

1

.v v

f

f
α ρ=

The process followed by Y3 is:

(26)( ) 23 3 3 ,vdY H X dt f d w= +

with ( ) ( ) ( )2

2
2
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2
vH X X d A X H X
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α α
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⎝ ⎠

1 2 2 2 1 2

2 2 2
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where is a new Wiener process, uncorrelated with and defined2vw 1vw

as follows:

2 1 21 2 1 2

2
, ,1 .v v vv v v vd w d w d wρ ρ− = −

The probabilities, lk, k – 1, lk, k et lk, k + 1, of moving from Y3j to Y3j – 1,Y3j and
Y3j + 1 are obtained in the same way as for X et Y2.
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Let et be the values for vulnerable European and American
v

PE
v

PA
put options written on a risky discount bond, respectively, with strike
price K and expiry date Tp. The terminal values of the puts at date Tp

are:

( ) ( ){ }( )
2 2

, , , , , , 2max ;0 1 ,
m m

v v

m j k m j k m j k D t V tPE PA K B Iη >⎡ ⎤= = − −⎣ ⎦

where for all j,k = –m,ÿÿÿ,m,

V1(tm) = exp((Y1)m, k + α1Xm, j),

V2(tm) = exp((Y3)m, k + α2Xm, j +α3(Y1)m, k),

D1(tm) = D1(t0) exp((X2
m,j – δ1)(tm – t0)),

D2(tm) = D2(t0) exp((X2
m,j – δ2)(tm – t0)),

0 .pT t
m

t

−
=

Δ

η1 and η2 are the percentage writedowns on the risky discount bond and
on the vulnerable option in case of default, respectively. At date ti, the
values of the puts are obtained from the backward equation:

( )
( ) ( ){ }( )2

2 2
, , 1, , 21 ,j i

t i ii

v v X t t
i j k i j kQ D t V tPE E PE e Iη− Δ

+ >
⎡ ⎤= −⎢ ⎥⎣ ⎦
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FIGURE 4.— Value of Vulnerable European Put Option on Risky
Discount Bond for Different Values of D2/V2. The parameter values
used are Tb = 5, D1/V1 = 0.50, a = 0.03578, b = 0.03435, σr = 0.00725,
λ= 1%, d1 = d2 = 0.05, = 0.2, = –0.25, r =

1 2v vσ σ=
1 2 1 2, , ,r v r v v vρ ρ ρ= =

0.0318, η1 = η2 = 0.5, Δt = 0.05, δ1 = δ2 = 0.08, M = 100, C = 5 and K =

(0,5).B
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FIGURE 5.— Value of Vulnerable European Put Option on Risky
Discount Bond for Different Values of ρv1,v2. The parameter values used
are Tb = 5, D1/V1 = D2/V2 = 0.50, a = 0.03578, b = 0.03435, σr = 0.00725,
λ = 1%, d1 = d2 = 0.05, = 0.2, = –0.25, r = 0.0318,

1 2v vσ σ=
1 2, ,r v r vρ ρ=

η1 = η2 = 0.5, Δt = 0.05, δ1 = δ2 = 0.08, M = 100, C = 5 and K = (0,5).B
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Simulated results are presented in table 5 and figures 4, 5 and 6. Figure
4 plots the value of a vulnerable European put option on a risky discount
bond for different values of ratio D2/V2 . As shown, the maximum values
of the put occur at different maturities as ratio D2/V2 increases. For
instance, when D2/V2 = 0.4, the maximum put value occurs for an option
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FIGURE 6.— Value of Vulnerable European Put Option on Risky
Discount Bond for Different Values of σv2. The parameter values used
are Tb = 5, D1/V1 = D2/V2 = 0.50, a = 0.03578, b = 0.03435, σr = 0.00725,
λ = 1%, d1 = d2 = 0.05, = 0.2, = –0.25, r = 0.0318,

1v
σ

1 2 1 2, , ,r v r v v vρ ρ ρ= =

η1 = η2 = 0.5, Δt = 0.05, δ1 = δ2 = 0.08, M = 100, C = 5 and K = (0,5).B

with a maturity of about 4 years. When D2/V2 = 0.7, however, the
maximum occurs for an option with a maturity of about 1 year. This is
because for a lower ratio D2/V2 the put value is essentially influenced by
the default risk of the underlying asset. In this case, the put value
increases with respect to option time-to-maturity. However, for a higher
ratio D2/V2 the put value is essentially influenced by the default risk of
the option writer. In this case, the put value decreases as Tp 6 Tb.

In figures 5 and 6 we plot the values of a vulnerable European put
option on a risky discount bond for different values of and .

1 2,v vρ
2vσ

The graph shows that the put value decreases when the correlation
1 2,v vρ

increases. This is due to the fact that affects the dynamics of the
1 2,v vρ

option writer's asset value. In particular, an increase in has a
1 2,v vρ

negative effect on the downward drift of the risk-neutral process for Y3.
This means, that as increases, the default risk of the option writer

1 2,v vρ
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TABLE 5. Prices of Vulnerable European and American Put Options on Risky
Discount Bond for Different Values of D1 and D2. 

D2

D1 160 200 240 280

160 European Put 1.2901 1.0768 0.3851 0.0163
American Put 1.3912 1.3912 1.3829 1.1348

200 European Put 4.1819 3.9605 2.6079 0.6309
American Put 4.7556 4.7556 4.7517 4.5007

240 European Put 8.0228 7.8249 6.4288 2.8686
American Put 10.0505 10.0505 10.0505 9.8004

240 European Put 10.9774 10.8155 9.6356 5.9598
American Put 15.5839 15.5839 15.5839 15.5834

Note:  The parameter values used are Tb = 5, V1 = V2 = 400, a = 0.03578, b = 0.03435,
σr = 0.00725, λ = 1%, d1 = d2 = 0.05, = 0.2, = –0.25, r =

1 2v vσ σ=
1 2 1 2, , ,r v r v v vρ ρ ρ= =

0.0318, η1 = η2 = 0.5, Δt = 0.05, δ1 = δ2 = 0.08, M = 100, C = 5 and K = (0,5).B

increases. In the same way, as shown by figure 6, an increase
in implies an increase in default risk of the option writer and the put

2vσ
value decreases as a result.

Table 5 shows the prices of vulnerable European and American put
options on a risky discount bond for different values of D1 and D2. The
results show that the American put value is less sensitive to changes in
D2. As discussed above, this is because the holder of the option can
reduce the impact of default risk by an early exercise. However, as D1

increases, both the European and the American put values increase. For
example, when D2 = 200, as D1 increases from 160 to 280, the European
and the American put values increase from 1.0768 and 1.3912 to
10.8155 and 15.5839, respectively. This result also holds for
non-vulnerable European and American put options on a risky discount
bond (the results are shown in figure 2 and discussed in section III).

VI. Conclusion

In this article, we have developed a model for valuing European and
American options on bonds, which incorporates both default and
interest rate risks. An important feature of our model is that it can be
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applied to value different kinds of options: options issued by
default-free counterparties on risky bonds, options issued by risky
counterparties on default-free bonds, and options issued by risky
counterparties on risky bonds — a case where default risk enters at both
levels. It is assumed that default risk occurs when the value of the firm
falls below a critical level, which depends on default-free interest rate
and the time left to maturity. In addition, our approach allows defaulting
to occur at any time prior to the maturity of the option and, in case of
default, only a constant fraction is paid. The results show that the price
of a put option on a risky bond is hump-shaped for a European put, and
monotone increasing for an American put. Another important result is
that the impact of default risk on the price of an American put option is
less important than it is on the price of a European one. The discrete
time approach adopted in this article can easily be extended to value
other derivatives with path-dependent features.

References

Altman, E. I. 1992. Revisiting the high-yield bond market. Financial
Management 21: 78–92.

Belhaj, R. 2002. Modélisation des obligations à coupons en présence d'un
risque de défaut. Finance 23: 25–49.

Black, F., and Cox, J.C. 1976. Valuing corporate securities: Some effects of
bond indenture provisions. Journal of Finance 31: 351–367.

Black, F., and Scholes, M. 1973. The pricing of options and corporate
liabilities. Journal of Political Economy 81: 637–654.

Brennan, M., and Schwartz, E. 1977. Convertible bonds: Valuation and optimal
strategies for call and conversion. Journal of Finance 32.

Brennan, M., and Schwartz, E. 1978. Finite difference method and jump
processes arising in the pricing of contingent claims. Journal of Financial
and Quantitative Analysis 13: 461–474.

Briys, E., and de Varenne, F. 1997. Valuing risky fixed rate debt: An extension..
Journal of Financial and Quantitative Analysis 32: 239–248.

Cathcart, L., and El-Jahel, L. 1998. Valuation of defaultable bonds. Journal of
Fixed Income (June): 65–78.

Courtadon, G. 1982. A more accurate finite difference approximation for the
valuation of options. Journal of Financial and Quantitative Analysis 17:
697–705.

Cox, J. C.; Ingersoll, J. E.; and Ross, S. A. 1985. A theory of the term structure
of interest rates. Econometrica 53: 385–407.



305Valuation of Options on Bonds

Das, S. 1995. Credit risk derivatives. The Journal of Derivatives (Spring):
7–23.

Duffee, G. 1996. On measuring credit risks of derivative instruments. Journal
of Banking and Finance 20: 805–833.

Geske, R. 1977. The valuation of corporate liabilities as compound options.
Journal of Financial and Quantitative Analysis 12 (November): 541–552.

Hull, J. and White, A. 1990. Valuing derivative securities using the explicit
finite difference method. Journal of Financial and Quantitative Analysis
25: 87–100.

Hull, J. and White, A. 1995. The impact of default risk on the prices of options
and other derivative securities. Journal of Banking and Finance 19:
299–322.

Jarrow, R. and Turnbull, S. 1995. Pricing derivatives on financial securities
subject to credit risk. Journal of Finance 50: 53–85.

Johnson, H. and Stulz, R. 1987. The pricing of options with default risk.
Journal of Finance 42: 267–280.

Kim, I.J.; Ramaswamy, K.; and Sundaresan, S. 1993. Does default risk in
coupons affect the valuation of corporate bonds? A contingent claims
model. Financial Management (Autumn): 117–131.

Longstaff, F. A. and Schwartz, E. S. 1995a. A simple approach to valuing risky
fixed and floating rate debt. Journal of Finance 50: 789–819.

Longstaff, F. A. and Schwartz, E. S. 1995b. Valuing credit derivatives. Journal
of Fixed Income (June): 6–12.

Merton, R.C. 1973. Theory of rational option pricing. Bell Journal of
Economics and Management Science 4: 141–183.

Merton, R.C. 1974. On the pricing of corporate dept: The risk structure of
interest rates. Journal of Finance 29: 449–470.

Nielsen, L. T.; Saá -Requejo, J.; and Santa-Clara, P. 1993. Default risk and
interest rate risk: The term structure of default spreads. Working Paper.
INSEAD.

Saá-Requejo, J. and Santa-Clara, P. 1999. Bond pricing with default risk.
Working Paper. The Anderson Graduate School of Management at UCLA.

Shimko, D.; Tejima, N.; and van Deventer, D. 1993. The pricing of risky debt
when interest rates are stochastic. Journal of Fixed Income (September):
58–66.

Tsiveriotis, K and Fernandes, C. 1998. Valuing convertible bonds with credit
risk. Journal of Fixed Income 8 (September): 95–102.


