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In this paper we present a model for valuing European and American
options, which incorporates both default and interest rate risks. We develop a
framework that permits evaluation of three kinds of options: (i) options issued
by default-free counterparties on risky bonds, (ii) options issued by risky
counterparties on default-free bonds and (iii) options issued by risky
counterparties on risky bonds— a case where default risk enters at both levels.
We show that the price of a put option on arisky discount bond is hump shaped
for a European put and monotone increasing for an American put. Wealso find
that the price impact of default risk islessfor an American put option than for
a European one (JEL: G13).
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|. Introduction

In the finance literature, default risk was first modeled by Black and
Scholes(1973) and Merton (1974), and then extended by Black and Cox
(1976), Shimko, Tejima, and van Deventer (1993), Nielsen,
Saa-Requejo, and Santa-Clara (1993), Longstaff and Schwartz (1995a),
Briys and De Varenne (1997), and many others. These authors model
corporate bonds and credit spreads. The purpose of this paper is to
provide an efficient model, which can be used to price European and
American options on bonds in the presence of default and interest rate
risks. Three classes of options have been identified and analyzed. The
first is when only the bond underlying the option is subject to default
risk. The second is when only the issuer of the option is subject to
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default, and thethird iswhen default risk enters at both levels, whichis
the case of options issued by arisky writer on risky bonds.

Since the early 1990's, the pricing of options with default risk isa
topic that has been discussed in increasing detail within finance
literature. Johnson and Stulz (1987) were the first to develop a model
for pricing European optionsissued by arisky writer, called vulnerable
options. Their assumption isthat interest rates are constant and default
occurs when the value of the option exceeds the value of the assets of
the counterparty upon exercise. Hull and White (1995) have extended
the Johnson and Stulz (1987) model when default can occur at any time
prior to maturity of the option. They postulate that default occursif the
value of the assets of the option writer falls below a specified default
boundary, and that only afraction of the nominal amount of aclaimis
paid out in case of default. However, their work does not consider the
situation where the underlying assets are subject to default risk.

Das (1995) has presented a valuation method for options on the
credit risk of a corporate debt. He has developed a pricing formula
whereinterest rates are assumed to be constant and where the dynamics
of interest rates are derived from the term structure model of Heath,
Jarrow and Morton (1992). Das (1995) has not studied vulnerable
options. Jarrow and Turnbull (1995) have used a foreign currency
analogy for pricing vulnerable optionsand optionson risky bonds. They
assume that the two processes — generating the interest rate and the
bankruptcy, respectively — are independent.

Thispaper isorganized asfollows: Section |1 providesthe notations
and presentsthe val uation framework. Section 11 presentsthe valuation
model and simulation results for options on risky bonds. Section 1V
presents the valuation model for vulnerable options on risk-free bonds,
and section V derives a valuation model and simulation results when
two sources of default risk are present - the case of vulnerable options
on risky bonds. Conclusions are made in section V1.

Il1. The Valuation Framewor k

Assumption 1. We assume perfect and frictionless markets. Trading
takes place continuously. There are no taxes nor transaction costs.

Assumption 2. Let S(t) denotetherisklesssecurity. ltsdynamicsare
given by:
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% r(t)dt,
S
wherer denotes the short-term risklessinterest rate. The dynamics of r
are given by: dr =a(b—r)dt+arx/?dzr, (1)

wherea, b, and ¢, are constantsand z, isastandard Wiener process. The
assumption regarding the dynamics of r is derived from the term
structure model of Cox, Ingersoll and Ross (1985). Asit does not allow
negative rates, this model fits the dynamics of interest rate better than
the Ornstein-Uhlenbeck process.
Assumption 3. Let V bethetotal value of the assets of thefirm. The
dynamics of V are given by:
dV =(u—-d)Vdt+o,Vdz,, 2

where 1 and o, are constants and z, is a standard Wiener process. The
processes z and z, are correlated and the instantaneous correlation
between dz, and dz, is pdt. We alow for a constant payout rate to the
investors of the firm, d. We assume that the value of the firm does not
depend on the capital structure of the firm. This is the standard
assumption that the Modigliani-Miller Theorem holds. Inthemodelling
approach adopted in this paper, we consider a firm whose capital
structure may include a variety of debts with different maturity dates
and coupon rates.

Assumption 4. Default occurs at the first date at which the value of
thefirm's assetsfall below acritical level. Thiscritical level is defined
as the total value D of the debt faced by the firm. We assume that the
process followed by D is:

dD(r (1)) _

D(r(D).0) [r(t)-J]dt, 3
where J is a constant payout rate to the debtholders of the firm. It is
usually assumed that default istriggered when the value of the assets of
afirmfallsbel ow aconstant default barrier, e.g. Longstaff and Schwartz
(1995a), and Kim, Ramaswamy, and Sundaresan (1993). This
assumption presents some degreeof inconsistency for itimpliesthat the
default barrier should be the same for all debts of the firm whatever
their maturity dates are.
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In practice, and asreported by SaédRequejo and Santa-Clara(1999),
default occurs when the value of the firm falls below the value of the
liabilities (stock-based insol vency) or whenthefirmfailsto makeacash
payment (flow-based insolvency). Our default barrier is defined as the
facevalueof theliabilities. Hence, thedrift of D(r(t),t) dependsontime
and on the riskless interest rate.

Assumption 5. In case of default only a fraction (1 — #) of the
no-default value of the security is paid at default date. Although, the
percentage writedown on a security in case of default depends on its
seniority, we shall assume for simplicity that # is a constant.

Under therisk neutral probability measure, the dynamicsof r and V
are given by:

dr =[a(b—r)—Ao,r]dt+o, v rdw,, @)
dV = (r —d)Vdt + o Vaw,, (5)

where 4 isaconstant and AT isthe market price of the interest rate
risk. w, et w, are two standard Wiener processes under the risk neutral
probability and pdt is the instantaneous correlation between dw, and
dw,.

Let §(t, r,V) denotevalueat timet of adefaultable discount bond

contingent on the value of V and r and promising M + C dollars at date
T, > t. Using assumptions 1, 2 and 3 aswell asequations (4) and (5), the
value of the defaultable discount bond must satisfy the following
fundamental partial differential equation:

B +(r—d)VB, +[a(b-r)-Ac.r]B +
o = 02 .= - =
=B, +?VVZB\N +po,0, VB, —~rB=0

(6)

The subscripts denote first and second order partial derivatives with
respect to r, V and t. The value of the defaultable discount bond is
obtained by solving equation (6) subject to the appropriate boundary
conditions. At maturity, the bondholder would receive the face value of
the bond if default did not occur during its life:
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B(T,,r,V)=M +C. @)

We propose to solve equation (6) using modified version of the explicit
finite difference method suggested by Hull and White (1990). Brennan
and Schwartz (1978) have shown that the explicit finite difference
method is equivalent to a trinomial lattice approach. They have also
shown how a transformation of variables ensures convergence when
stock options are being valued. Hull and White (1990) have modified
the explicit finite difference method and have used both a
transformation of variables and a new branching process.

As Brennan and Schwartz (1978) and Hull and White (1990)
demonstrate, it is appropriate to make a transformation of variables to
obtain constant instantaneous standard deviation. From equations (4)
and (5), the appropriate transformations of r and V are:

X =~/1 8)
Z=Ln(V). (9)

From Ito's lemma, the processes followed by X and Z under the risk
neutral probability measure are:

dX = A(X)dt + gdw, (10)
o
where =—
g 2
_ 2
A(x):%‘b_ar_ﬁ(aﬂwr)'
8X 2
0_2
and dZ=[r—d— zvjdt+0'\,dwv. (11)

The next stage is to transform variables again in order to eliminate the
correlation between dw, and dw,. Let Y denote the new variable defined
asfollows:
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Y =Z-aX where 0(:2,0&. (12)
From Ito's lemma, the process followed by Y under the risk neutral
probability measureis:
dY =H (X)dt+ fdw,,

2

where H(X):(Xz—d—a—z"j—aA(X),

and f=0,J1-p°. (13)

W, is a new Wiener process, uncorrelated with w, and defined as

Vv

follows: dw, — pdw, =+/1- p? dW,. (14)

To implement the explicit finite difference method, we divide the time

interva [t,,T,] into n subintervals[t;, t..,] of equal length, wheret, =t,

+ iAt, At = b,i = 1,.,n. We denote X, + jAX and Y, + kAY
n

respectively, by X and Y,. Therelationship between AX, AY and At is:*

AX =gV 3At and AY = f+/ 3At

The partition of the (t,X,Y) spaceformsagrid. Let (i, j, k) denotethe
node of thethree dimensional grid representing the point of coordinates
t =ty +iAt, X, + JAX and Y, + KAY, withi =1,.,nandjk=4,.,i.
Brennan and Schwartz (1978) and Hull and White (1990) show that the
explicit finite difference method is equivalent to a trinomial lattice
approach. For instance, X; can reach three possible values X, + AX, X
and X, —AXattimeT,,,. The probabilities of moving fromX; to X;. ;, X;
and X _, are chosen to respect the first and second moments of the
changein Xinthetimeinterval At, and to makethe sumequal to unity:?

1. SeeHull and White (1990, p. 94).

2. The At? terms are ignored.
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Gjrat 0 tdi1=1
0;j+1 (AX) + G54 (FAX) = E[X(t + At) - X(1)],
G+ 2(AX)% + 0 j_2(-AX)* = E[(X(t + At) — X(D)],
whereq; ;. 4, ¢, ; and g ; _, are the probabilities of moving from X; to
X, 1, X and X _; respectively. It is possible to verify that this discrete

time processconvergestowardsthe underlying continuous-time process
as At - 0. It can be clearly expressed that:

1 AX)PAE L AX)At

G =5 T oax? 2AX
2 AX)PAt®
LTI
1 A(X)’At?  A(X)At
Q=%+ - -

6 2AX? 2AX

Since X can take any positive value, A(X) is hot bounded. It follows
that, in some situations, the standard explicit finite difference method
may not ensure positive probabilities and convergence. A modified
method should then be used, as described in Hull and White (1990),
whom have proposed aternative branching proceduresto ensurethat the
probabilities associated with all three branches remain positive. It can
be shown that the constraint of positivity implies that X, < X <X a0

where:®
x BN P +Aaee,

min 2%

x BB +hee,

max 282

3. SeeHull and White (1990, p. 95).
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< 4N

(a) (b) (©)

FIGURE 1.— Alternative Branching Procedures. (@) is the standard
branching procedure, (b) isthe procedure when X, is reached and (c)
isthe procedure when X, is reached.

_AX

and B AL
Figure 1 shows three possible branches in the tree. When the value
Xqin 1STeached, anew branching procedureisused (figure 1(b)) and the
three possible valuesthat could be reached by X; after At are X;, X; + AX
and X + 2AX. When the value X, is reached, the branching procedure
used isdescribed in figure 1(c) and the three possible values that could
be reached by X after At are X, X, — AX and X, — 2AX. The branching
probabilities in these cases are obtained in the same way asthey arein
the case of figure 1(a).
When X, is reached:

A(X)? At? L 3AX)At
2AX? 2AX

7
G ; —E"'

1 AX)*At? _ A(X)At
9%2="37 2
3 AX AX

1 A(X)?At?2  A(X)At
Aj2=% 7t
6  2AX 2AX
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When X, is reached:

1 A(X)?At?2  A(X)At
Q2= -

6 2AX? 2AX
1 AX)PA® L A(X)AL
Nin="3 T T4 ax

7., A(X)*At*  BA(X)At
6  2AX? 2AX

Q.

Since H(X) depends only on X, H(X) is bounded. It followsthat, for
thevariable Y, the branching procedure used correspondsto figure 1(a).
At each node of thetrinomial lattice, Y, canreach three possible values
Y+ AY, Y, and Y, — AY in thetimeinterval At. It is easy to verify that
the branching probabilitiesin this case. They are:

1 H(X)?At*? H(X)At
pk,k+1:_+ 2 + '
6  2AY 2AY

_2 H(X)*At?
3 AY?

Py«

1 H(X)?At? H(X)At
Pex1=7% -

+
6 2AY? 2AY

where py . 1, Pk @nd py,_; arethe probabilities of moving Y, to Y, ., Y,
and Y, _, respectively.

The objective of this paper is to apply modified version of the
explicit finite difference method, as presented above, to the val uation of
European and American options on bonds in presence of default risk.
Three types of options need to be distinguished: (i) options issued by
default-free counterparties on risky bonds, (ii) options issued by risky
counterparties on default-free bonds and (iii) options issued by risky
counterparties on risky bonds, a case where the default risk enters at
both levels.
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[11. Pricing Options on Defaultable Bonds

In this section, we apply the modified explicit finite difference method
presented above to the valuation of options on risky bonds, where only
the issuers of the bonds are subject to default risk. Let (t, X, Y) denote

the three dimensional space wherete [t,,T,], t,isthecurrenttime, T,

is the maturity of the risky bond, and T, < T, is the maturity of a
European or an American put with strike price K on the risky bond.

A. Valuing Options on Risky Discount Bonds

For simplicity we consider the case of options on arisky discount bond.
Let E,j,k be the value of arisky zero-coupon bond at node (i, j, k) = (t;,

X, Y,). According to assumptions 4 and 5, default occurs at the first date
at which the value of firm's assets falls below the nominal value of the
debts faced by the firm, and in case of default only a constant fraction
of the no-default value of the bond is paid at default date. At maturity,
the value of the risky discount bond is:

_ [ M+C if D(t)<V(t,) ©
"'J'*‘{(l—m(Mw) it D(tn>>V(tn>}’ 19
where V(t,) = exp(Ynx +aX,)), (16)

D(t,) = D(to)exp((XG; — d)nAt) for all j, k=—,.....,n, a7

and 7 isthe percentage writedown on therisky discount bondinthe case
of default. Thevalue of therisky discount bond prior to maturity can be

calculated using the risk-neutral valuation. The value of BatimeTis

known. Thevalue of B at time t; isequal to the expected value at time
t ., 1, inarisk neutral world, discounted at time t; using the risk-free
interest rate. Since the probabilities obtained in section Il are

risk-neutral, the price E,j,k at node (i, j, k) of arisky discount bond is

obtained from its prices at all nodes in the next period through the
backward equation:
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. Eq By e ™™™ if D(t)<V(Y)
| a-mEy [Bu, ]e T it D)V
where
Eq ':B|+1,j,k:| = G:Z_:lé;lqj,jw pk,k+§B|+l,j+9,k+g“’
for all

i=n—1,....0a0djK=—i.....i, (18)

and Eq denotes expectations under the risk neutral probability, Q.

Let Ei,j,k and mi,j,k bethe values of aEuropean and an American

put optionswritten on arisky discount bond at node (i, j, k). At maturity
T,, the values of these puts are:

Em,j,k =E°\m,j,k = max[K —Em,j,k;o:l,

where m= : (29

and jok=—m,... m.

Before maturity, the values of these puts are obtained by backward
equationsin the same way asthey arefor Bij« :

Ei,j,k = qu (Em,j,k)efx'z(ti)m, (20
ﬁi,j,k = maX[Ele (mﬂ,j,k)e_x'z(t')m; K —Ei,j,k:|, (21)

where i=m-1,... LOandj, k=H,..... g

Simulated results for put options on risky discount bonds are
reported in table 1, table 2 and figure 2. The parameter values used are
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TABLE1. Pricesof Europeanand American Put Optionson Risky Discount Bond
for Different Values of D/V.

DIV T, European Put Value American Put Value
1 0.5495 0.6346
2 0.8072 0.8963
0.40 3 1.0512 11757
4 1.2026 15126
5 0.4643 1.9455
1 2.2071 2.3146
2 3.0239 3.2403
0.50 3 3.5214 4.0919
4 3.6641 5.0324
5 12397 6.0723
1 4.8042 4.9317
2 6.3190 6.9924
0.60 3 6.9397 8.8191
4 6.9301 10.6416
5 1.8082 12.2362

Note: The parameter values used are T, = 5, a = 0.03578, b = 0.03435, ¢, = 0.00725, 4
=1%, d=0.05, 6, = 0.2, p =0.25, r =0.0318, n = 0.5, At =0.05, 6 =0.08, M =100, C=5

andK = B (0,5).

K=B(0,5),M=100,C=5,r=0.0318, a=0.03578, b = 0.03435, ¢, =
0.00725, A = 1%, 6, =0.2,d = 0.05, 6 = 0.08, = 0.5 and At = 0.05. In
our model, the factor » represents the percentage writedown on a
security in case of default. On asample of defaulted bond issues during
the 198510 1991 period, Altman (1992) reportsaveragewritedownrates
ranging from 39% to 80% depending on the seniority of the issue.
Vauesof a, b and o, are based on empirical tests of the Cox, Ingersoll
and Ross model made by Belhg) (2002) on french data. The other
parameters correspond to a standard calibration.

The effects of capital structure are reported in table 1. Capital
structureisreflected by theratio D/V. In table 1, we vary theratio D/V
from0.4t0 0.6. Several interesting observations can be made. First, and
as expected, the value of a put option on arisky discount bond is an
increasing function of D/V. When the ratio D/V increases, the price of
arisky discount bond decreases, and thus the value of the put increases.
Second, the value of the American put is higher than that of the
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Put value
Put value

D/V=0.4 D/V =05

Put value
Put value

Put value

D/V=0.28

European Put === ---eeea-- American Put

FIGURE 2— Vaues of European and American Put Options on Risky
Discount Bond for Different Vaues of D/V. The parameter values used
areT,=5,a=0.03578, b = 0.03435, ¢, = 0.00725, 1 = 1%, d = 0.05, 7,
=0.2,p=-0.25,r =0.0318, = 0.5, At =0.05, 0 = 0.08, M = 100, C =

5and K =B (0,5).

European put. Thereason for thisis because the holder of an American
put on arisky discount bond, can decide to exerciseit early in order to
alleviate the impact of the default risk.

Table 1 and figure 2 show the effects of put maturity T, when the
risky discount bond's maturity isfixed at 5 years. One can see that the
value of the American put is a monotonic increasing function of T,..
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TABLE2. Pricesof European and American Put Optionson Risky Discount Bond
for Different Values of  and g,.

n o, Credit Spreads European Put Value  American Put Value
(Basis Points)
0.15 36.63 0.4170 0.4745
0.25 0.20 163.57 2.7169 2.9197
0.25 379.16 5.7509 6.2211
0.15 41.14 0.4956 0.5601
0.50 0.20 182.31 3.0239 3.2403
0.25 417.16 6.1810 6.6870
0.15 43.24 0.5327 0.6002
0.75 0.20 190.77 3.1601 3.3828
0.25 434.10 6.3630 6.8877

Note: The parameter values used are T, = 5, T, =2, a=0.03578, b =0.03435, ¢, =
0.00725, 1 = 1%, d = 0.05, p =-0.25, r = 0.0318, D/V = 0.5, At = 0.05, § = 0.08, M = 100,

C=5andK =B (05).

However, when D/V = 0.4, the maximum value for the European put
occurs with a maturity of about 4.25 years. However, when D/V = 0.8,
the maximum value for the European put occurs with a maturity of
about 2.75 years. This is because the value of a European put on the
risky discount bond contains both the time value from the put option
and thetimevalue from therisky discount bond, whichisalso an option
onfirmvalue. Thetimevalueof therisky discount bond decreaseswhen
both D/V increases and T, - T,,.

Table2 showsthe effects of the percentage writedown z ontherisky
discount bound in case of default and the volatility o, on European and
American put values. When 7 increases, the credit spread increases and
the European and American put valuesincrease asaresult. For instance,
when ¢, = 0.2, as 5 increases from 0.25 to 0.75, the European and
American put values increase from 2.7169 and 2.9197 to 3.1601 and
3.3828, respectively. Consequently, the percentageincreaseontheprice
issignificantly less for an American put than it isfor a European put.

It is also apparent from table 2 that if ¢, increases, then thereis a

tendency for B to decrease and for the value of the put option to
increase. When = 0.5 the credit spread increasesfrom 41.14t0 417.16
basispointsasa, increasesfrom 0.15 to 0.25 and the val ues of European
and American put options increase from 0.4956 and 0.5601 to 6.1810
and 6.6870, respectively. Thus, the impact of default risk on the price
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of American put option is less important than it is on the price of a
European put option.

B. Valuing Options on Risky Coupon Bonds

In this section, we extend the discrete time model presented in the
previous subsection to value options on risky coupon bonds. Longstaff
and Schwartz (1995a) and Cathcart and El-Jahel (1998) developed a
model in which risky coupon bonds can be valued as simple portfolios
of discount bonds. This decomposition presents some inconsistency in
the sensethat the default barrier isassumed to be constant (independent
from the maturity of the discount bond) and the same for all discount
bonds. Geske (1977) used the contingent claim approach to value
coupon bonds with a constant interest rate. He states, therefore, that a
corporate coupon bond can be evaluated as a compound option.

Let Bi,j« bethevalueat node(i, j, k) = (t, X, Y,) of arisky coupon
bond promising N coupons. At maturity, the value of the risky coupon
bond is obtained in the same way as for a discount bond by equation

(15). At time t;, the value of risky coupon bond under the risk neutral
probability is:

Buix=| G+ Bq (Buaiw)e T (1o ) (22

where C, isthe coupon paid at the end of periodi,i =N-1,........ , 0, and
o k==, . Given the value of the risky coupon bond at each node
(i, j, k) of the three-dimensional lattice, the values of European and
American put options are obtained from equations (19), (20) and (21).

C. Valuing Options on Risky Convertible Bonds

An advantage of the discrete time approach adopted in this paper isthat
it can be easily extended to value options on risky convertible bonds. In
thissubsection, we examinetheeffectsof default risk on optionswritten
onarisky convertible bonds. A convertiblebondisahybrid bond which
allows its bearer to exchange it for a given number of shares of stock
anytime before the maturity date of the bond. As a consequence, a
convertible bond is equivalent to a portfolio of two securities: a
non-convertible bond with the same coupon rate and maturity as the
convertible bond, and acall option written on the stock of thefirm. The
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early conversion feature makes the convertible bond similar to an
Americanoption. Brennanand Schwartz (1977), Kim, Ramaswamy, and
Sundaresan (1993), and Tsiveriotisand Fernandes (1998) haveanalyzed
the valuation of corporate convertible bonds, but their work does not
examine the case of options on these bonds.

In this subsection, we apply the modified version of the explicit
finite difference method to the valuation of options written on a

corporate convertible bonds. We consider a convertible bond, B :
maturing at time T, convertible at any time to shares of the underlying
stock, and paying at expiration M + C if not converted. At maturity date,
the value of the risky convertible bond is:*

QWV(t,)-D(t,)) if  V(t)-D(t,) xS

M+C

Bnjk = M +C it 0<V(t,)-D(t,)< (23)

1-7)(M+C) if default

where Q isthe conversion ratio and indicates the number of underlying
stock sharesinto which the bond may be converted. Inthe same way as
for anon-convertible bond, the value of arisky convertible bond before
maturity isobtained using backward equationsin rel ation to conversion
and default conditions at each node of the branching tree. Thus, the
values of European and American options written on this bond are
obtained from equations (19), (20) and (21).

Figure 3 plots the value of a European put option written on a
convertible bond with and without default risk asafunction of thevalue
of the firm. We assume that the put option is at-the-money and the
conversion ratioisequal to 0.5. Asthevalue of thefirm goestoinfinity,
the default probability decreases and thus the value of a put option on
the risky convertible bond converges towards the value of a put option
on a default-free convertible bond. In the case where the value of the
firmfalls, it will not be optimal to convert the bond and, as showninthe

4. | assume that the convertible bond is non callable by the issuer and non putable for
a cash amount by the holder.
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FIGURE 3.— Values of European Put Option on Convertible Bond with
and without Default Risk. The parameter valuesused are T, =5, T, = 2,
a=0.03578, b =0.03435, ¢, = 0.00725, A = 1%, d = 0.05,5,= 0.2, p =
—0.25,r = 0.0318, = 0.5, At = 0.05, D = 200, 6 = 0.08, M = 100, C =

5 Q=05and K =B (0,5).

previous section, the value of aput option is an increasing function of
ratio D/V. Such is not the case for a put option on a default free
convertible bond.

V. Pricing Vulnerable Options

When an optionispriced, it isusually assumed that thereisno risk that
the counterparty writing the option will default. But as the
over-the-counter market develops, the default risk of the option writer
becomes very significant. Johnson and Stulz (1987) have derived
pricing formulas for vulnerable European options where the option has
been assumed to be the sole liability of the counterparty.

In this section, we examine the impact of default risk of the option
writer on European and American options' prices. For convenience, we
assume that the asset underlying the option is a default-free discount
bond. Let B(t, r) denote value at timet of a default-free discount bond
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TABLE 3. Percentage Reduction Arising from Default Risk in the Prices of
Vulnerable European and American Call Options.

T, European Call American Call

Panel A: Call Options are at-the-money K = B(0,5) = 89.4743

0.5 0.00 0.00
1.0 0.02 0.01
15 0.20 0.11
2.0 0.74 0.38
25 1.63 0.82
3.0 2.82 1.39
35 4.22 2.07
4.0 5.77 2.83
45 7.44 3.63
5.0 9.14 4.47

Panel B: Cdl Options are out-of-the-money K = 95, B(0,5) = 89.4743

0.5 0.00 0.00
1.0 0.00 0.00
15 0.00 0.00
2.0 0.38 0.35
25 1.45 133
3.0 2.70 2.26
35 4.14 3.22
4.0 5.72 4.22
4.5 7.41 523
5.0 9.14 6.25

Note: The parameter values used are T, = 5, D/V = 0.5, a=0.03578, b = 0.03435, ¢,
=0.00725, 1 = 1%, d = 0.05, ¢, = 0.2, = 0.5, p = -0.25, r = 0.0318, At = 0.05, 6 = 0.08,
M =100, and C=5.

promising M + C dollars at date T, and CE' and CAY be the values of
European and American call options written on a risk-free discount
bond, respectively, with strike price K and expiry date T, < T,.. In the
present case, V and D designate the value of the assets and the value of
the debts of the firm of the option writer, respectively. Applying the
valuation model presented in section Il, the values of European and
American call options at date T, are:

CEp, i« =CAyj« =max[ B, - Kio](l_mw(tm»vum)})'
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V(t,) and D(t,,) are obtained from equations (16) and (17), respectively.
At node (i, j, K), the values of call options derive from the following
backward equations:

CE «=Eq [CEiil,J,k]e_xf(t')m (I-ogpvan): (29

CA k= max( By [CAil,j,k}efxf(t‘ "B - K)(l‘”'{m i)
(25)

Table 3 showsthe effect of the option maturity T, on the vulnerable
European and American call optionsprices. In panel A and panel B, the
option maturity is varied from 0.5 year to 5 years, the bond maturity
being fixed at 5 years. It appears that the percentage reduction in the
option priceincreases with option maturity ; thisis because the default
risk of the option writer itself increases with respect to maturity. For
example, asshownin panel A of table 3, the percentage reductioninthe
price of a vulnerable European call at-the-money is equal to 2.82
percent when the option timeto maturity isfixed at 3 yearsand isequal
to 9.14 percent when the option time to maturity is fixed at 5 years.

It is also apparent from table 3 that the percentage reduction in
vulnerable option prices is less for an American option than for a
European one. As noted in subsection 111 A, the reason for thisis that
the American option holder can decide to exercise early in order to
eliminate theimpact of default risk.> For instance, when the option time
to maturity isfixed at 4 years, the percentage reduction in the price of
avulnerable European option at-the-money isequal to 5.77 percent and
itisequal to 2.83 percent for a vulnerable American option.

5. Theholder of the vulnerable American option is fully informed about V and D and
he decidesto exercisewhen D isjust below V. Thisisnot the casefor adefault-free American
option.
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TABLE 4. Percentage Reduction Arising from Default Risk in the Prices of
Vulnerable European and American Call Options.

DIV
r (%) 0.30 0.50 0.70
2.18 European Call 0.00 0.72 15.73
American Call 0.00 0.48 12.28
3.18 European Call 0.00 0.38 11.07
American Call 0.00 0.35 10.95
418 European Call 0.00 0.00 0.00
American Call 0.00 0.00 0.00

Note: The parameter values used are T, = 5, T, = 2, a = 0.03578, b = 0.03435, ¢, =
0.00725, 1 =1%,d =0.05, 6,= 0.2, = 0.5, p =-0.25, At = 0.05, § = 0.08, M = 100, C =5,
and K = 95.

Table4 providesresultsfor the percentage reduction in the prices of
vulnerable European and American optionsfor different valuesof r and
D/V. As the default risk increases with the ratio D/V, the percentage
reduction in the vulnerable option prices is an increasing function of
D/V. It can also be seen from table 4 that the vulnerable American
option isless sensitive to default risk than the European one.

Table 4 also shows that the percentage of price reduction for a
vulnerable call option decreases as the riskless interest rate increases.
Thisisexplained by thefact that when theinterest rate tendsto infinity,
both the default-free and vulnerable options are worthless and the
percentage reduction should tend to zero.

V. Pricing Vulnerable Options on Risky Bonds

In this section we examine the case of options issued by arisky writer
on risky bonds, acase wheretwo sources of default risk are present. Let
V, bethetotal value of the assets of the bond issuer, and V, be the total
value of the assets of the option writer. According to assumption 3, the
dynamics of V,; and V, under the risk neutral probability are given by:

aV, = (1 —d,)V,dt + o, Vidw, ,
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dV, =(r-d,)V,at+o,V,dw, ,
wheredw, dw, = p, . dt,dw, dw, = p, , dt and dw, dw, =p, , . Inthe

same way as when there is only one source of default risk, the
appropriate transformations of V, and V, are:

Y, = In(V,) — a,X
Y, = 1n(V,) — a,X.
From Ito's lemma, the processes followed by Y, and Y, are:
dY, = H,(X)dt + fdw,,

2

HAX){XZ—%—‘}J—%A(X),

where Vvv1 isanew Wiener process, uncorrelated with w, and defined as
follows: dw, — o, dw, =/1-p?, dw, ,
dY, = H,(X)dt + f,dw,,

2

O,
with HZ(X):[xz—dz— ;J—azA(X),

f2 = O-vz \ 1- prz.vz ’
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Vo

TV, '
O
.

0, =2p

where V—Vv2 isanew Wiener process, uncorrelated with w, and defined

asfollows:
de2 — P Yy dWr = \ 1- prz,v2 dV—VVz .

It is also appropriate to make another transformation in order to offset
correlation between w,, et W, . Let Y, denoteanew variable such that:

Y=Y, —a5Yq,

— f2
3= pvl,vz T
1

The process followed by Y; is:

dY, = H,(X)dt+ f.dw,, (26)

2

with H3(X):(X2—d2—O-ZVZJ—%A(X)—%Hl(X),

f3 = f2 Y :I'_p\/zl,v2 = O-vz \/1_pr2,v2 \/:I-_p\/zl,v2 '

where V—sz isanew Wiener process, uncorrelated with v_vv1 and defined

as follows:
-_— -_— B > =
dWVz - pvl,vzdwvl - \/ 1- pvl,v2 dWVz .

The probabilities, I, 1, Iy « €t Iy . 1, of moving from Y to Y5 _,,Y; and
Y5 ., are obtained in the same way asfor X et Y,.
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1 Hy(X)?At?2  Hy(X)At
b ==+ 7t '
“l e 2AY; 2AY,

2 Hy(X)*At?
k=5 ———r
3 AY;

1 Hy(X)?A  Hy(X)At

I =—+
“Te T 2AY? 2AY,

Let PE et PA bethe values for vulnerable European and American
put options written on a risky discount bond, respectively, with strike
price K and expiry date T,. The terminal values of the puts at date T,

are:
PEnj = Phn k= max[K ‘Em’ivk;0}(1_’72|{Dz<tm>>vz<tm)})’
where for all j.k=—m,....m,
Vi(ty) = exp((Yo)m k + 0aXpn ),
Voltw) = eXp((Ya)m k + aXo j +a5(Yi)m s
Dy(t) = Da(to) exp((X3; — 01)(tn — b)),
D,(t) = D,(to) eXp((X3; — 95)(tn — b)),

T,~t,
At

n, and #, are the percentage writedowns on the risky discount bond and
on the vulnerable option in case of default, respectively. At datet;, the
values of the puts are obtained from the backward equation:

- - — X2 (t)At
PEiik=Eq [PE”“'"}e A7 0,0 )
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FIGURE 4.— Vaue of Vulnerable European Put Option on Risky
Discount Bond for Different Values of D,/V,. The parameter values
used are T, = 5, D,/V; = 0.50, a = 0.03578, b = 0.03435, ¢, = 0.00725,

A=1%,d,=d,=0.050, =0, =02,p,, =p,,, =P\, = 02571 =
0.0318, n, =5, =0.5, At=0.05, 9, =9, =0.08, M =100, C=5and K =
B (0,5).

PA i = max(EQ [m'vﬂ,j,k}e_xmm; K —Ei,J,k)(l—ﬂzHDz(n Pyt )

where:

=Y — B . - X (t)At
Bi.jk=Eq, [B'“'J'k]e R R ATk
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Put value

Tp

rho(V1,V2)=-0,25  ------- rho(V1,V2)=0 — ———rho(V1,V2)=0,25 |

FIGURE 5.— Value of Vulnerable European Put Option on Risky
Discount Bond for Different Valuesof p,, ,,. The parameter values used
areT,=5,D,/V,=D,/V,=0.50,a=0.03578, b=0.03435, 5, = 0.00725,
A=1%,d,=d,=0050, =0, =02 p,, =p,,, =-0.25,1r =0.0318,

5, =n,=05, At =0.05, 6, = 5,=0.08, M = 100, C =5 and K = B (0,5).

1 1

EQ.‘ |:§i+l,j,k:| = z z Q.0 pk’k+§§i+1,j+9,k+§,
-1

6=—1¢

1

—_V 1 _
EQti [PEiﬂ'j'k} - Z 2 d;.j+olkkse PEisLivok+c,

6=—1{="1

— 101 -
EQ.‘ |:PAi+1,j,k:| = Z z qj,j+9|k,k+§ PA ok

6=—1{="1

Simulated results are presented in table 5 and figures 4, 5 and 6. Figure
4 plotsthevalue of avulnerable European put option on arisky discount
bond for different valuesof ratio D,/V, . Asshown, the maximum val ues
of the put occur at different maturities as ratio D,/V, increases. For
instance, when D,/V, = 0.4, the maximum put val ue occursfor an option
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Put value

Tp

sigma_V2=0,15 ------- sigma_V2 =0,2 — — — —sigma_V2 =0,25 |

FIGURE 6.— Vaue of Vulnerable European Put Option on Risky
Discount Bond for Different Vaues of o,,. The parameter values used
areT,=5,D,/V,=D,/V,=0.50,a=0.03578, b =0.03435, 5, = 0.00725,
A=1%,d,=d,=0.05,0, =0.2, p, , =p;,, =P, ,, =—0.25,r=0.0318,

5, =n,=05, At=0.05, 6, =5,=0.08, M = 100, C=5and K = B (0,5).

with a maturity of about 4 years. When D,/V, = 0.7, however, the
maximum occurs for an option with a maturity of about 1 year. Thisis
becausefor alower ratio D,/V, the put valueisessentially influenced by
the default risk of the underlying asset. In this case, the put value
increaseswith respect to option time-to-maturity. However, for ahigher
ratio D,/V, the put value is essentially influenced by the default risk of
the option writer. In this case, the put value decreases as T, - T,,.

In figures 5 and 6 we plot the values of a vulnerable European put

option on a risky discount bond for different values of p, , ando,, .
Thegraph showsthat the put valuedecreaseswhenthecorrelation p, ,,
increases. Thisis dueto thefact that p, , affectsthe dynamics of the

option writer's asset value. In particular, an increase inp, , has a

negative effect on the downward drift of the risk-neutral processfor Y.
Thismeans, that as p, ,, increases, the default risk of the option writer
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TABLES. Prices of Vulnerable European and American Put Options on Risky
Discount Bond for Different Values of D, and D,.

D,
D, 160 200 240 280
160  European Put 1.2901 1.0768 0.3851 0.0163
American Put 1.3912 1.3912 1.3829 1.1348
200  European Put 4.1819 3.9605 2.6079 0.6309
American Put 4.7556 4.7556 4.7517 4.5007
240  European Put 8.0228 7.8249 6.4288 2.8686
American Put 10.0505  10.0505 10.0505 9.8004
240  European Put 10.9774  10.8155 9.6356 5.9598
American Put 155839  15.5839 15.5839 15.5834

Note: The parameter values used are T, =5, V; =V, =400, a = 0.03578, b = 0.03435,
o, = 0.00725, 1 = 1%, d, = d, = 0.05, o, =0, = 0.2, Pry =Pry, =Py, = -0.25,r =

0.0318, , =1, = 0.5, At = 0.05, 5, = 6, = 0.08, M = 100, C= 5 and K = B (0,5).

increases. In the same way, as shown by figure 6, an increase
ino,, impliesanincreasein default risk of the option writer and the put

value decreases as a result.

Table 5 showsthe prices of vulnerable European and American put
options on arisky discount bond for different values of D, and D,. The
results show that the American put valueisless sensitive to changesin
D,. As discussed above, this is because the holder of the option can
reduce the impact of default risk by an early exercise. However, as D,
increases, both the European and the American put valuesincrease. For
example, when D, =200, as D, increasesfrom 160 to 280, the European
and the American put values increase from 1.0768 and 1.3912 to
10.8155 and 15.5839, respectively. This result also holds for
non-vulnerable European and American put options on arisky discount
bond (the results are shown in figure 2 and discussed in section I11).

V1. Conclusion
In this article, we have developed a model for valuing European and

American options on bonds, which incorporates both default and
interest rate risks. An important feature of our model is that it can be
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applied to value different kinds of options: options issued by
default-free counterparties on risky bonds, options issued by risky
counterparties on default-free bonds, and options issued by risky
counterpartieson risky bonds— acase where default risk entersat both
levels. It is assumed that default risk occurs when the value of the firm
fallsbelow acritical level, which depends on default-free interest rate
and thetimeleft to maturity. In addition, our approach alowsdefaulting
to occur at any time prior to the maturity of the option and, in case of
default, only a constant fraction is paid. The results show that the price
of aput option on arisky bond is hump-shaped for a European put, and
monotone increasing for an American put. Another important result is
that the impact of default risk on the price of an American put optionis
less important than it is on the price of a European one. The discrete
time approach adopted in this article can easily be extended to value
other derivatives with path-dependent features.
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