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Vector error-correction models (VECM) are increasingly being used to
capture dynamic relationships between financial variables. Estimation and
interpretation of such models can be enhanced if zero restrictions are allowed
in the coefficient matrices. Specifically, in tests of indirect causality and/or
Granger non-causality in a VECM, the efficiency of the causality detection is
crucially dependent upon finding zero coefficient entries where the true
structure does indeed include zero entries. Such a VECM is referred to as a
zero-non-zero (ZNZ) patterned VECM and includes full-order models. Recent
advances have shown how ZNZ patterns can be explicitly recognized in a
VECM and used to provide an effective means of detecting Granger-causality,
Granger non-causality and indirect causality. This paper develops a general
approach and framework for I(d) integrated systems. We show that causality
detection in an I(d) system can be discovered identically from the ZNZ
patterned VECM’s or the equivalent VAR models (JEL: C10, C63, F30, G10).

Keywords: error correction models, VAR, granger causality, purchasing
power parity.

I. Introduction

The use of vector autoregressive models (VAR) and vector error-
correction models (VECM) for analyzing dynamic relationships among
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1. Christoffersen and Diebold (1998) indicate that imposing cointegration on a bi-
variate system can improve forecasts.

financial variables has become common in the literature (e.g.
MacDonald and Power [1995], Lee [1996], Barnhill et al. [2000]).
Moreover, relationships are often examined within the framework of a
cointegrated system. The popularity of these models has been associated
with the realization that financial systems and relationships among
financial variables are complex, which traditional time-series models
have failed to fully capture.

Engle and Granger (1987) note that, for cointegrated systems, the
VAR in first differences will be mis-specified and the VAR in levels
will ignore important constraints on the coefficient matrices. Although
these constraints may be satisfied asymptotically, efficiency gains and
improvements in forecasts are likely to result from their imposition.
Hence, Engle and Granger (1987) suggest that if a time-series system
under study includes integrated variables of order 1 and cointegrating
relations, then this system will be more appropriately specified as a
vector error-correction model (VECM) rather than a VAR. Comparisons
of forecasting performance of VECMs versus VARs for cointegrated
systems are reported in Engle and Yoo (1987), and LeSage (1990).1 The
results of these studies indicate that the VECM is a more appropriate
specification in terms of smaller long-term forecast errors, when the
variables satisfy cointegration conditions.

Subsequently, Ahn and Reinsel (1990), and Johansen (1988, 1991)
have proposed various algorithms for the estimation of cointegrating
vectors in full-order VECM models, which contain all non-zero entries
in the coefficient matrices. There are many examples of the use of full-
order VECM models in the analysis of short-term dynamics and long-
term cointegrating relationships (e.g. Reinsel and Ahn [1992]; Johansen
[1992, 1995]). 

A problem can arise in relation to the use of full-order VECM
models as such models assume nonzero elements in all their coefficient
matrices. As the number of elements to be estimated in these possibly
over-parameterised models grows with the square of the number of
variables, the degrees of freedom is heavily reduced.

A related problem is to provide satisfactory financial and economic
interpretations for the estimated cointegrating vectors. As emphasized
by Penm et al. (1997) it is important to introduce a priori information,
usually to produce zero-non-zero (ZNZ) patterns. To address this issue,
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2. Of note, an I(1) system does not contain any fractionally integrated variables.

3. Chow (1983) examines Granger causality in a bi-variate time-series model, and
discusses the use of zero restrictions to represent causality interaction in different but
equivalent model specifications. Chow’s models are not set up to separate the dynamic and
long-term responses. However, VECM models proposed in this paper accommodate both
long-term and dynamic responses.

4. There are two appendices to this paper which are available upon request. Appendix
A outlines the algorithm proposed by Penm et al. (1997) for the selection of the optimal
VECM. Appendix B describes the use of the Yule-Walker relations for fitting ZNZ patterned
VECM models.

Penm et al. present a search algorithm and procedure to identify the
optimal specification of a ZNZ patterned VECM for an I(1) system.2

Application of VECM models to economic and financial time-series
data have revealed that zero coefficient entries are indeed possible
(Chow [1983], King et al. [1991]).3 An optimal VECM specification
with zero entries suggests that the cointegrating vectors and the loading
vectors may also contain zero entries. In this approach the zero entries
are determined from data, with model selection criteria used for the
selection of the optimal model (Penm et al. [1997]). However, the
existence of zero entries has not been fully discussed in causality and
cointegration theory. Specifically the ability to detect the presence or
absence of indirect causality and/or Granger non-causality is related to
the identification of the optimal model. Further, the exact nature of the
long-term cointegration relations will be crucially dependent upon
finding those zero coefficient entries where the true structure does
indeed include such zero entries.

The paper’s main contribution is to demonstrate that Granger non-
causality, indirect causality and the ZNZ patterned cointegrating vectors
can be detected in the context of a single ZNZ patterned VECM
framework which allows for zero entries, that is, for time series of
integrated order I(d), d $ 1. Moreover, the Granger causal relations are
detected from the coefficient matrices on the lagged difference terms
and from the error-correction terms. The paper also shows that identical
causality detection for this I(d) system can be revealed in the equivalent
VAR framework.

The remainder of this paper is organized as follows. Section II
reviews causality patterns in VAR modeling. Section III describes zero
entries in a ZNZ patterned VAR and its equivalent VECM for an I(d)
system. Causality detection in VECM modeling is also discussed.4 Two
three-asset examples are then presented for illustrative purposes. To



Multinational Finance Journal156

demonstrate the usefulness of the ZNZ patterned VECM for causality
detection and cointegration investigation, section IV demonstrates two
exchange rate applications. The first application examines the causal
relationships between the movements of the Euro’s exchange rate and
the money supply. The second application conducts an examination of
purchasing power parity focusing on the Yen. Concluding remarks are
provided in section V.

II. Causality Patterns in VAR Modeling

First, as shown below, note that a VECM is identical to a VAR model
with unit roots. Consider the following VAR model:

(1)( ) ( ) ( ) ( ) ( )
1

p
py t A y t A L y t tτ

τ

τ ε
−

+ − = =∑

where g (t) is a (sx1) independently and identically distributed vector
random process with E{g(t)} = 0 and E{g(t)g´(t – τ)} = V,τ = 0, and
E{g(t)g´(t – τ)} = 0, τ > 0.

Aτ, τ = 1, 2, …p are (sxs) parameter matrices, and, ( )
1

p
pA L I A Lτ

τ
τ −

= +∑
L denotes the lag operator and the roots of *AP(L)* = 0 lie outside or on
the unit circle. Further, we have the following relation:

( ) ( ) ( )
1

*

1

1
p

p pA L A I L I A Lτ
τ

τ

−

−

⎛ ⎞= + − +⎜ ⎟
⎝ ⎠∑

It follows from the concept of cointegrated variables that y(t) is said to
be I(1) if it contains at least one element which must be differenced
before it becomes I(0) (Granger [1981]). Then y(t) is said to be
cointegrated of order 1 with the cointegrating vector, β, if β´y(t)
becomes I(0), where y(t) has to contain at least two I(1) variables. Under
this assumption the identical VECM for (1) can be described as: 

(2)( ) ( ) ( ) ( )* 11 pA y t A L y t tε−− + Δ =

where y(t) contains both I(0) and I(1) variables, Δ = (I – L), A* = Ap(1),
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A*y(t – 1)is stationary, and,

( )
1

1 *

1

p
pA L I A Lτ

τ
τ

−
−

−

= +∑

The first term in (2) (i.e. A*y(t – 1)) is the error-correction term,
which contains the long-term cointegrating relationships. Ap–1(L)Δy(t)
is referred to as the VAR part of the VECM, describing the short-term
dynamics. Because y(t) is cointegrated of order 1, the long-term impact
matrix A* must be singular. As a result A* = αβ´, where α and β are (sxr)
matrices and the rank of A* is r, where r < s. The columns of β are the
cointegrating vectors, and the rows of  α are the loading vectors.

Now, consider a bi-variate system where y(t) = [y1(t)y2(t)]3, then the
following natural way of defining a causal ordering may be developed.

Consider (L) = ,where (L) is the (i,j)-th entry of Ap(L).a p

ij
1

p

ij
Lτ τ

τ

α
=
∑ a p

ij

Definition (a): y1(t) Granger non-causes y2(t), and y2(t) Granger causes

y1(t) if and only if ap
21(L) = 0 and at least one is nonzero.12, 1, , ,pτα τ = …

That means: and the coefficients, , τ = 1,...,p11 12

22

a ( ) a ( )
( )

0        a ( )

p p

p

p

L L
A L

L

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

12

τα

in αp
1, 2(L) can be either zero or nonzero, but at least one  is nonzero.

12

τα
Further, there exist 2p-1 different patterns of ap

1,2(L) in this bi-variate
system, indicating that y1(t) Granger non-causes y2(t), and y2(t) Granger
causes y1(t).
Definition (b): y2(t) Granger non-causes y1(t), and y1(t) Granger causes
y2(t) if and only if and at least one ,is nonzero.

12
a ( ) 0p L =

21
, 1, , pτα τ = …

That means: 11

21 22

a ( )     0
( )

a ( )  a ( )

p

p

p p

L
A L

L L

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

and the coefficients, can be either zero or
21 21
, 1, ,  in a ( )pp Lτα τ = …

nonzero, but at least one is nonzero.
21

τα
Definition (c): y2(t) Granger causes y1(t) and y1(t) Granger causes y2(t)
if and only if ap

12(L)…0 and ap
21(L)…0.

Definition (d): y2(t) Granger non-causes y1(t) and y1(t)Granger non-
causes y2(t) if and only if ap

1, 2(L) = 0 and ap
21(L) = 0.

The above causality patterns can be detected from the optimal
selected ZNZ patterned VAR proposed in Penm and Terrell (1984b).
More general causal patterns can be treated using definitions suggested
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5. For more detail, again refer to Penm and Terrell (1984b) and Hsiao (1982).

by Hsiao (1982).
Consider the following trivariate system:

11 12 13 1

21 22 23 2

32 33 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

0 ( ) ( ) ( )

p p p

p p p

p p

a L a L a L y t

a L a L a L y t t

a L a L y t

ε
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

which describes y1(t) causing y3(t) but only through y2(t). In this
trivariate system the above indirect causality implies:

 
31 21 32

a ( ) 0, a ( ) 0 and a ( ) 0.p p pL L L= ≠ ≠
Also

{ } { } { }12 13 23
0 or 0 , 0 or 0  and  0 or 0 , 1, , .pτ τ τα α α τ= ≠ = ≠ = ≠ = …

The greater the number of components, yi(t),i = 1,2,…,the more
complicated are the causal patterns that may be detected.5

III. Zero Entries in ZNZ Patterned VAR and Equivalent
VECM for an I(d) System

This section of the paper consists of two parts. The first part shows the
equivalence between ZNZ patterned VECMs and the corresponding
VAR models. The second part presents two three-asset examples to
demonstrate the equivalence. Thus this section contributes both
theoretical development and numerical examples to show the
equivalence of causality detection in VAR and VECM modeling.

A. Equivalence Between VECM and VAR Models

In an I(d) system the equivalent VECM derived from (1) can be
described as follows:

(3)
1

1 1

(1) ( 1) (1) ( 1) ...

(1) ( 1) ( ) ( ) ( ),

p p

p d d p d d

A y t A y t

A y t A L y t tε

−

− + − −

− + Δ − +
+ Δ − + Δ =

Ap–i(1)Δiy(t – 1) are stationary, i = 0,…,d – 1. The first d terms are the



159Causality Detection

error-correction terms, while Ap–d(L)Δdy(t) is said to be the
autoregressive part of the model.

In order to show the equivalence between ZNZ patterned VECMs
and the corresponding VAR models, the following two properties need
to be established:
(i) If yj does not Granger-cause yi then every (i,j)-th entry must be zero
for all coefficient matrices in the VAR. Also all (i,j)-th coefficient
elements in the equivalent VECM are zeros.
(ii) If yj does Granger-cause yi, then the (i,j)-th element of Ap(L) in the
VAR is nonzero. In addition at least a single (i,j)-th coefficient element
is nonzero in Ap(1), Ap–1(1), …, Ap–d%1(1), or Ap–d(L) in the equivalent
VECM.

To prove Property (i), we have the following relations in the VAR
and its equivalent VECM:

(4)1( ) (1) ( )( ), , 1,..., 1.k k kA L A L A L I L k p p p d−= + − = − − +

Since Granger causality detection is crucially dependent on the
positions of off-diagonal zero entries in the coefficient matrices, we
therefore focus on the positions where i…j. If the (i,j)-th entries of Ak(L),
Ak(1), and Ak–1(L) are ai,j(L), ai,j(1), and ei,j(L) respectively, we have:

ai,j(L) = ai,j(1)L + ei,j(L)(1–L), i…j. (5)

Now we define ei,j(L) by:

ei,j(L) = e1L + … + ek–1L
k–1, 

and thus,

ei,j(L)(1–L) = e1L+(e2 –e1)L
2 + … + (ek–1 – ek–2)L

k–1 –ek–1L
k. (6)

If aij(L) = 0, then aij(1) will also be zero. From (5) we have eij(L)(1 – L)
= 0, and (6) produces e1 = 0, e2–e1 = 0, … , ek–1 – ek–2 = 0, ek–1 = 0, which
lead to ei = 0, i = 1, …, k–1, and therefore cij(L) = 0.

At this point, if the (i,j)-th entry of Ak(L) is zero, then the (i,j)-th
elements of both Ak (1) and Ak–1(L) are zeros. Therefore we can conclude
that if every (i,j)-th entry is zero for all coefficient matrices in a VAR
then all (i,j)-th coefficient elements in the error-correction terms and in
the vector autoregressive part of the VECM, will also be zeros.

Analogously it is evident that if the (i,j)-th elements of all Ak(1), k =
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p, p – 1, …, p – d+1 and Ak–1(L) in (3) are zeros then the (i,j)-th entry of
Ap(L) in the equivalent VAR will be zero. Therefore we can conclude
that if all (i,j)-th coefficient elements in the error-correction terms and
all (i,j)-th coefficient elements in the vector autoregressive part of the
VECM are zeros, then every (i,j)-th entry is zero for all coefficient
matrices in a VAR. Thus we establish Property (i).
To prove Property (ii), we can express (4) as follows:

(7.1)1 1( ) (1) ( ) ( )p p p pA L A L A L A L L− −= + −

(7.2)1 1 2 2( ) (1) ( ) ( )p p p pA L A L A L A L L− − − −= + −
!

(7.3)1 1( ) (1) ( )p d p d p dA L A L A L L− + − + −= +

From (7.3) it is obvious that if the (i,j)-th element of Ap–d+1(1) is
nonzero, then the (i,j)-th element of Ap–d+1(L) is nonzero. Also if  the
(i,j)-th element of Ap– d (L) is nonzero, then a zero (i,j)-th element of
Ap–d+1(1) leads to a nonzero (i,j) element of  A p–d+1(L). Thus, we have
proved that if there exists a nonzero (i,j)-th element in either Ak(1) or
Ak–1(L), k = p, p – 1,…, p – d + 1 in (4), then the corresponding (i,j)-th
element of Ak(L) is nonzero. This outcome shows that if any single (i,j)-
th element is nonzero in any one of the d matrices, Ak(1) , k = p, p –
1,…, p – d + 1, or Ap–d(L) in the VECM in (3) is nonzero, then the (i,j)-
th element of Ap(L) in the equivalent VAR is nonzero.

Analogously from (7.1) if the (i,j)-th element of Ap(L) is nonzero,
then at least the (i,j)-th element is nonzero in one of the following d
coefficient matrices, or Ap–d(L):

Ap(1), Ap–1(1), …, Ap–d+1(1).

Therefore we have demonstrated that Property (ii) is established. 
An indirect causality from yj to yi through ym indicates yj causing yi

but only through ym. Hence, yj Granger-causes ym, ym Granger-causes yi,
and yj does not Granger-cause yi directly. It can be easily demonstrated
that the VAR in (1) has nonzero (m,j)-th and (i,m)-th elements and a
zero (i,j)-th element of Ap(L). The identical indirect causality can also
be shown in the equivalent VECM. Thus any questions on the nature of
the causal pattern can be addressed either through the VAR approach or
the VECM approach, and the causal pattern identified is identical.
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It is noteworthy that Johansen (1988) has proposed the following
VECM equivalent to the VAR model of (1) in an I(1) system:

(8)1 *( ) ( ) ( ) ( ),p L y t A y t p tε−Γ Δ + − =
where

1
1

1

( ) .
p

p i

i
i

L I L
−

−

=

Γ = + Γ∑

The error-correction term of this VECM is A*y(t – p), while the error-
correction term in (2) is A*y(t – 1). Thus we have:

(9)
1

, 1, , 1,
k p k

I A A k pΓ = + + + = −" …
and

(10)*

1
.

p p
A I A A= + + +"

Recall that ak
ij denotes the (i,j)-th entry of Ak. Let gk

ij and a*
i j denote the

(i, j)-th entry of Γk and A* respectively. From (9) it is obvious that all p
entries,{ ak

ij, k = 1,ÿ,p – 1} are zeros; then a*
i j is zero and all {gk

ij,k =
1,ÿ,p} are also zeros. Similarly if a*

i j and all {gk
ij,k = 1,ÿ,p – 1} are zeros,

then {ak
ij,k = 1,ÿ,p} are zeros. Therefore we can conclude that Property

(i) is valid for (8) and the equivalent VAR. We then show that if any
single ak

ij,k = 1,ÿ,p in the VAR is nonzero, then the (i,j)-th entry is
nonzero in either A* or Γp–1(L). To begin with, we rewrite (9) as:

,
1 1p

I AΓ = +

2 1 2
,AΓ = Γ +

þ
(11)

1
, 2, , 1

k k k
A k p−Γ = Γ + = −…

From (11) if a1
i j is nonzero, then g1

i j is nonzero. However if a1
i j is zero,

then g1
i j will be zero. We then inspect a2

i j. Similarly, if a2
i j is nonzero,

then g2
i j is nonzero. In addition, it is obvious that if ap

i j is nonzero and all
ak

ij,k = 1,ÿ,p – 1 are zeros, then a*
i j is nonzero, even though all gk

ij,k =
1,ÿ,p – 1 are zeroes.

Analogously it can be proved that if any single (i,j)-entry is nonzero
in either A* or Γp–1(L) then the (i,j)-th entry of Ap(L) in the equivalent
VAR is nonzero. Therefore, the above demonstrates that if yj does
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Granger-cause yi in (8), then the (i,j)-th element of Ap(L) in the VAR is
nonzero. In addition the (i,j)-entry is also nonzero in either A* or Γp–1(L)
or both in the equivalent VECM. Thus the causal pattern identified
through the VAR approach or the VECM approach is identical.

B. Illustrations

To show the equivalence of causality detection in VAR and VECM
modeling, two three-asset examples are presented to illustrate this
outcome. The first example involves two cointegrating relations and one
unit root, while the second one involves one cointegrating relation and
two unit roots. 

In considering a VAR model with ZNZ patterned coefficient
matrices, we allow for zero entries in the parameter matrices Aτ of (1).
If y1,t, y2,t and y3,t are the log prices of three assets, then the returns on the
assets are defined byΔy1,t = z1,t,Δy2,t = z2,t, and Δy3,t = z3,t . All z1,t, z2,t and
z3,t are jointly determined by the following equations:

z1,t – 0.6z1,t–1 – 0.8z2,t–1 = g1,t

z2,t – 0.1z1,t–1 – 0.4z2,t–1  – 0.8z3,t–1 = g2,t

z3,t – 0.1z2,t–1 – 0.8z3,t–1 = g3,t

The equivalent VAR model of this system can then be presented as:

(12)
1, 1, 1 1,

2, 2, 1 2,

3, 3, 1 3,

0.6 0.8 0

0.1 0.4 0.8 .

0 0.1 0.8

t t t

t t t

t t t

z z

z z

z z

ε
ε
ε

−

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ − − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

In this VAR model, both a1
1,3(L) and a1

3,1(L) are zeros. Thus Granger non-
causality exists between the first asset’s return and the third asset’s
return. Further, a1

2,1(L)…0 and a1
3,2(L)…0, which indicate indirect causality

from the first to the third asset’s return via the second asset’s return.
To inspect unit roots, we have the following relationship to

determine the roots of the characteristic polynomial:



163Causality Detection

1 0.6 0.8 0

det 0.1 1 0.4 0.8 0.

0 0.1 1 0.8

L L

L L L

L L

− −⎡ ⎤
⎢ ⎥− − − =⎢ ⎥
⎢ ⎥− −⎣ ⎦

This relationship leads to det{(1 – 0.8L + 0.08L2)(1 – L)} = 0. Therefore
a single unit root is detected. 

Next, we turn to the VECM modeling. By adding and subtracting a
[z1,t–1 z2,t–1 z3,t–1]Nvector to the left side of equation (12), the VAR in (12)
can be presented as follows:

1, 1, 1 1, 1 1,

2, 2, 1 2, 1 2,

3, 3, 1 3, 1 3,

0.4 0.8 0

0.1 0.6 0.8 .

0 0.1 0.2

t t t t

t t t t

t t t t

z z z

z z z

z z z

ε
ε
ε

− −

− −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− + − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Thus we have:

(13)
1, 1, 1 1,

2, 2, 1 2,

3, 3, 1 3,

0.4 0.8 0

0.1 0.6 0.8 .

0 0.1 0.2

t t t

t t t

t t t

z z

z z

z z

ε
ε
ε

−

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ −⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ + − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Since the (1,3)-th and (3,1)-th elements of the VECM are zeros, we can
conclude that Granger non-causality exists between z1,t and z3,t. Indirect
causality is also detected from z1,t to z3,t through z2,t, due to all remaining
nonzero elements. Hence causal relations indicated by the VECM are
identical to these relations shown in the equivalent VAR in (12).

In addition, the rank of the impact matrix in (13) is 2, not 3. This
matrix can be decomposed as follows:

0.4 0.8 0 0.4 0
1 2 0

0.1 0.6 0.8 0.1 0.4 .
0 1 2

0 0.1 0.2 0 0.1

− −⎡ ⎤ ⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎢ ⎥− − = − ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

The following two ZNZ patterned cointegrating vectors are also
identified:[–1 2 0] and [0 –1 2].Further, the first selected cointegrating
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vector demonstrates that the first asset’s return and the second asset’s
return are cointegrated. The different sign occurring in z1,t–1 and z2,t–1

indicates that, ceteris paribus, when the first asset’s return rises, the
second asset’s return increases. It also implies that, ceteris paribus, a
decrease in the first asset’s return leads to a fall of the second asset’s
return. The second selected cointegrating vector indicates that the
cointegrating relationship exists between the second asset’s return and
the third asset’s return. The different sign occurring in z2,t–1 and z3,t–1

also reveals that, ceteris paribus, a rise in the second asset’s return leads
to an increase in the third asset’s return. For the second example, all z1,t,
z2,t and z3,t are determined by the following equations:

z1,t – z1,t–1 = g1,t

z2,t + z1,t–1 – 0.5z2,t–1 – 0.8z3,t–1 = g2,t

z3,t – z3,t–1 = g3,t.

The VAR model of this system can then be shown as:

(14)
1, 1, 1 1,

2, 2, 1 2,

3, 3, 1 3,

1.0 0 0

1 0.5 0.8 .

0 0 1

t t t

t t t

t t t

z z

z z

z z

ε
ε
ε

−

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+ − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

In this VAR model a1
2,1(L) and a1

2,3(L) are non-zeros, while the
remaining a1

i ,j(L),i …j, are zeros. Thus Granger causality exists only from
both the first asset’s return and the third asset’s return to the second
asset’s return. To determine the roots of the characteristic polynomial
for inspecting unit roots, we have

1 0 0

det 1 0.5 0.8 0,

0 0 1

L

L L L

L

−⎡ ⎤
⎢ ⎥− − =⎢ ⎥
⎢ ⎥−⎣ ⎦

which leads to det{(1 – 0.5L)(1 – L)2} = 0. Therefore two unit roots are
detected. 
Next, the VAR in (14) can be presented as follows:



165Causality Detection

1, 1, 1 1, 1 1,

2, 2, 1 2, 1 2,

3, 3, 1 , 1 3,

0 0 0

1 0.5 0.8 .

0 0 0

t t t t

t t t t

t t t t

z z z

z z z

z z z

ε
ε
ε

− −

− −

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Thus we have the following equivalent VECM:

(15)
1, 1, 1 1,

2, 2, 1 2,

3, 3, 1 3,

0 0 0

1 0.5 0.8 .

0 0 0

t t t

t t t

t t t

z z

z z

z z

ε
ε
ε

−

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Since only (2,1)-th and (2,3)-th elements of the off-diagonal
elements in the VECM are non-zeros, we can conclude that Granger
causality exists only from both z1,t and z3,t to z2,t, due to all remaining
zero elements. Hence causal relations indicated by the VECM are
identical to these relations shown in the equivalent VAR in (14).

Since the rank of the impact matrix in (15) is 1, not 3, we can have
the following decomposition: 

[ ]
0 0 0 0

1 0.5 0.8 1 1 0.5 0.8 .

0 0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Thus the following single ZNZ patterned cointegrating vector is

identified: [ ]1 0.5 0.8−
Further, the selected cointegrating vector demonstrates that the first
asset’s return, the second asset’s return and the third asset’s return are
cointegrated. The same sign occurring in z1,t–1 and z2,t–1 and the different
sign occurring in z1,t–1 and z3,t–1 indicate that, ceteris paribus, an increase
in the first asset’s return leads to a fall of the second asset’s return, but
a rise of the third asset’s return.  

 
IV. Exchange Rate Applications

The above sections have shown ZNZ patterned VECM modeling. As
argued earlier, the use of this procedure is particularly suited to
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FIGURE 1.— M3 Growth and the Reference Value in the European
Monetary Union Source: ECB

financial variables in which complex relationships exist. In the next two
sub-sections, two empirical applications of the modeling procedure
using foreign exchange examples are presented.

A. Relationship between Movements of the Euro and the Money Supply
 
The first application focuses on the detection of causal relationships
between movements in the Euro’s exchange rate (relative to the U.S.
dollar) and the money supply in the European Monetary Union.

The Euro was introduced on 1 January 1999 as official currency. To
date the Euro has become the second most widely traded currency at the
international level, behind the U.S. dollar and ahead of the Japanese
yen. During the first year of trading, the value of the Euro relative to the
U.S. dollar fell markedly. The Euro’s weakness throughout this period
confounded earlier general expectations that it would trend upwards
relative to the U.S. dollar (see ECB [2001]).

Money supply in the Euro area is measured by the standard stock of
money (M3). It consists of sight deposits, shorter deposits of up to 2
years, and marketable instruments. Figure 1 shows that for the entire
year of 1999 the monthly measures of M3 were always higher than the
reference value of 4.5 percent set by the Governing Council of the
European Central Bank. The Governing Council has adopted a price
stability-oriented monetary policy strategy, that is, the rate of monetary
expansion is designed to achieve the objective of price stability. Thus
it may be presumed that the 4.5 percent benchmark for the growth rate
of M3 is regarded as the level to accomplish this objective.

Our task is to assess the nature of the influence of the money supply
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6. Of course, in reality the relationship between the money supply and exchange rate
involves other relevant variables, including, but not limited to, international funds flows,
consumer prices and interest rate differentials.

7. The Euro was in a preliminary stage prior to 1 January 1999. The currency was an
artificial construct comprising a basket - the European currency unit - that was used by the
member states of the EU as their internal accounting unit for the currency area of the
European Monetary System (EMS). The EMS was a managed flexible exchange rate system

on the exchange rate, ceteris paribus. In the gold standard era, since the
gold reserves of a country were limited (if they were not gold
producers), the growth rate of money supply was related to the level of
country’s reserves. The unmanaged growth of money supply could lead
to changes in value of a country’s currency. In the present circumstances
of a floating exchange rate system, currencies are expected to fluctuate
according to supply and demand. In order to smooth the market,
governments may adjust the money supply which directly or indirectly
influences the foreign exchange rate. However governments are not able
to control the exchange rate over a long period without regard to
economic fundamentals.

The most widely held view is that, ceteris paribus, an expansion in
money supply is associated with a decrease in domestic interest rates,
which leads to a depreciation in the domestic currency. Conversely, a
tightening of monetary policy leads to an appreciation of the domestic
currency. Lewis (1993) utilizes VAR modeling to investigate the impact
of U.S. monetary shocks on the U.S. dollar exchange rate and finds that
a loosening of monetary policy is associated with a depreciating
currency. Cushman and Zha (1997) examine the effects of monetary
shocks on the Canadian dollar, and again employ the VAR approach to
conduct their tests. They conclude that a contraction in the U.S. money
supply leads to a depreciation in the Canadian dollar.

There is already literature reporting the causal relationships between
the money supply and economic activity in the Euro area (see BIS
[2000]). However an investigation into the direct relationships between
the money supply and the Euro’s exchange rate has so far not been
attempted.6

To investigate the causal relationships between the movements in the
Euro’s exchange rate (against the U.S. dollar) and the money supply of
the Euro area, monthly data on the Euro’s exchange rate (Ee) and
seasonally adjusted M3 are collected from DataStream™. We use data
beginning at January 1997 and ending at August 2001 which provides
a sample size of 56 months.7 A smaller sample size is considered to be
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that defined bands wherein the bilateral exchange rates of the member countries could
fluctuate. In this sense the data pre-1999 are not true market-determined rates but rather
indicative figures.

8. To preserve journal space, the relevant test results are not presented here but can be
supplied on request.

9. The zero entries are determined from the data using the model selection criteria to
determine the optimal ZNZ patterned VECM model. Details are provided in the appendices.

10. In a simultaneous equation system GLS estimates are more efficient than OLS
estimators, when the regressors in each individual equation are not identical (Zellner [1962]).
Since the VECM is a simultaneous equation system, and the ZNZ pattern is extremely
unlikely to produce the same regressors in each equation, GLS techniques will be necessary
in most cases. 

11. In ZNZ patterned time-series modeling Tiao and Tsay (1989) propose an algorithm

insufficient in order to conduct the analysis. In detecting the causal
relationships between the movements of the Euro’s exchange rate and
the money supply, the optimal VECM models are selected for log(M3)
and log(Ee) at T = 56, 57, 58, 59 and 60. To increase the sample size
from 57 to 60 we then add a single month sequentially from September
2001 to December 2001, and re-estimate the model as we add each
observation. To examine stationarity for each series, the augmented
Dickey-Fuller (ADF) unit root test is used. The results show that both
log Ee and log M3 are I(1) processes at T = 56, 57, 58, 59 and 60.8

To demonstrate the usefulness of the proposed algorithms in a small
sample environment, a maximum order of 12 is selected. We use a
maximum lag of 12 because we expect the non-zero coefficients in the
autoregressive part to have lag length less than 12, and accept the
likelihood is high of a ZNZ patterned lag structure. We also need to
keep as many degrees of freedom as possible. This bi-variate system
includes coefficient matrices in the VAR part and an impact matrix. The
maximum lag of 12 gives us 413 = 67,108,864 possible candidate models
to select the optimal VECM model.

Following the proposed algorithm, the optimal ZNZ patterned
VECM models from T = 56 to T = 60 are chosen using the Schwarz
Bayesian Criterion (SBC).9 The optimal models selected are estimated
using the GLS techniques and are shown in table 1.10 To check the
adequacy of each optimal model fit, the strategy suggested in Tiao and
Tsay (1989) and Penm et al. (1997) is used, with the proposed Penm and
Terrell (1984b) algorithm applied to test each residual vector series,
using the SBC criterion.11 The results in table 1 support the hypothesis
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using the crit(m,j) criterion to select the vector autoregressive moving average process with
zero entries. After the final model is selected, their algorithm is then applied to the residual
series to test whether this series is a vector white noise process.

12.  It is useful to re-estimate the model parameters using the sample sizes of T = 56, 57,
58, 59 and 60. Since we achieved a similar specification for all sample sizes under
examination. This supports a constant parameter specification with identical ZNZ patterns
showing that our specification results are not changing as we include additional observations.

13.  Instantaneous causality indicates the interactions among contemporaneous variables
involved in the system (see Chow [1983]).

that each residual vector is a white noise process. These optimal models
are then used as the benchmark models for analyzing the causal
relationships. In addition, in conducting the instantaneous causality
detection, the algorithm proposed in Penm and Terrell (1984b) is also
applied to the estimated V of each optimal model.12 13

In analyzing the causality detected, a patterned VECM which shows
Granger-causality from M3 to Ee, Granger no-causality from Ee to M3,
and no instantaneous causality between M3 and Ee is selected at all
times. This outcome confirms that the money supply influences the
movements of the Euro over the test period. M3 is detected as a
variable, which produces leading information on the Euro’s movements.
That is, a shock to M3 creates a lagged response in the Euro. These
findings are consistent with economic intuition and prior evidence. 

B. Purchasing Power Parity in Japan

The second application examines purchasing power parity (PPP) using
the bilateral exchange rates between the Japanese yen and the U.S.
dollar. The PPP theory states that movements in the exchange rate
between two countries’ currencies are determined by movements in
their relative prices. Formally the PPP condition can be expressed as Et

= Pt/Pt*, where Et denotes units of domestic currency per unit of foreign
currency, Pt domestic price level, and Pt* foreign price level.

Recently, cointegration has been widely utilized to test for PPP.
Following Engle and Granger (1987), consider an I(1) system where
both log(Et) and log(Pt/Pt*) are characterized as integrated of order 1.
If there is a long-term cointegrating relationship between them, that
isβ´Xt = (β1,β2)[log(Et), log(Pt/Pt*)]´= gt with gt as a stationary process,
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TABLE 1. The VECM’sa,b Selected for Detecting the Causal Relationships
between Ee and M3

VECM: ( ) ( ) ( ) ( )
1

* *

1

1 ,
p

y t A y t A y t tτ
τ

τ ε
−

−
Δ + Δ − + − =∑

where y(t) = [log Ee, log M3]’.

Sample size (T) 56 57 58

Value of τ selected 1 1 1

Estimated A*
1

( )
0.3801 0

0.1246

0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
0.3728 0

0.1229

0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
0.3609 0

0.1233

0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Estimated A*

( )
0.2006 0.0299
0.0636

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
0.2009 0.0316
0.0631

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
0.1981 0.0288
0.0640

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Value of p 
for residual
analysis: (Normalized SBCc)
57

0 1 2 3

1. 1.007 1.025 1.034

58

0 1 2 3

1. 1.006 1.017 1.025
59

0 1 2 3

1. 1.007 1.018 1.025
Pattern of Granger
causalityd logEe7log M3 logEe7log M3 logEe7log M3
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14. For this case, McFarland et al. (1994) claim that the necessary condition for PPP
holds in the long run.  If the cointegrating vector is β´ = (1,–1) , the necessary and sufficient
condition for PPP will hold.

TABLE 1. (Continued)

Sample size (T) 59 60

Value of τ selected 1 1

Estimated A*
1

( )
0.3202 0

0.1228

0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
0.3360 0

0.1212

0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Estimated A* ( ) ( )
0.2049 0.0314
0.0652 0.0099

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

( ) ( )
0.2066 0.0320
0.0645 0.0098

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

Value of p for
residual analysis:(Normalized SBCc)

0 1 2 3

1. 1.007 1.018 1.025

0 1 2 3

1. 1.008 1.019 1.025
Pattern of Granger
causalityd logEe7log M3 logEe7log M3

Note: The VECM model is a: The value of p is chosen by AIC, in conjunction with
confirming the residual vector is a white noise process; b: Model selected by SBC using the
GLS Procedure. Standard errors are in parentheses. Δ denotes first difference. c: For
simplicity, the values of SBC for p>3 are not presented, but can be supplied to readers upon
request. d: w 6 z denotes w Granger causes z.

then PPP holds in the long run.14

In contrast to the commonly employed unit-root based tests and full-
order VECM modeling, the ZNZ VECM modeling presents a single
framework for conducting causality detection and cointegration
investigation among the variables involved in the system, and provides
estimates of the long-term and dynamic responses.

Prior research has shown that high-frequency data (for example
monthly data) may not reveal evidence of PPP in the long run (see
McNown and Wallace [1989], Taylor [1988], and Corbae and Ouliaris
[1998]). However when researchers (see Edison [1987], and Kim
[1990]) shift to low-frequency data such as an annual series, and use
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15. Examples of using cointegration techniques to find evidence of PPP include Fleissig

TABLE 2. The VECMa,b Identified for Examining PPP in Japan

Variables: y1(t) = log(E), y2(t) = log(P), y3 = log(IR).

Sample Period: 1974 to 2000;

VECM: ( ) ( ) ( ) ( )
1

1

1 .
p

A y t y t A y t tτ
τ

τ ε
−

∗ ∗

=

− + Δ + Δ − =∑
Non-zero (i,j)-th entries in estimated coefficient matrices, A(

τ and A(:
τ i,j entry (s.e.) i,j entry (s.e.) i,j entry (s.e.)
1 2,3 0.1267 (0.0584) 3,3 –0.1258 (0.0531)
2 2,2 0.1732 (0.0497) 2,3 0.1197 (0.0562) 
5 2,3 –0.1093 (0.0583) 3,1 0.1896 (0.0553)
6 2,3 –0.1463 (0.0581)
7 3,1 0.1252 (0.0550) 
10 2,2 0.1504 (0.0502) 2,3 0.1106 (0.0561)
11 1,1 –0.1179 (0.0558)
12 2,2 –0.3058 (0.0513)
13 2,3 –0.1835 (0.0561)
16 1,3 –0.1168 (0.0532) 3,3 0.1026 (0.0530)
A( 2,1 –0.0545 (0.0121) 2,2 0.0178 (0.0040) 2,3 0.0647 (0.0128)

The type of selected:V̂
1.10103 03 0 0

0 2.81048 05 0  

0 0 1.13040 05

E

E

E

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

Residual analysis
Existing lags 0 1 2 3 4 5
Normalized SBCc 1. 1.0031 1.0055 1.0072 1.0090 1.0105

Long-term 
Cointegrating Relationship  Identified: log(E) = 0.3281 log(P) + 1.1853 log(IR)

Note: a)The value of p is chosen by AIC, in conjunction with confirming the residual
vector is a white noise process. b) Model selected by SBC using the GLS procedure. Standard
errors in parentheses. Δ denotes first difference. c) For simplicity, the values of SBC for p>5
are not presented, but can be supplied to readers upon request. Of note, the SBC criterion is
the sum of two terms. The first term is the log of the determinant of the estimated residual
variance-covariance matrix, while the second term depends on the number of functionally
independent parameters estimated and a term which is log(sample size)/sample size. In this
paper all SBC values computed for the two applications are positive values. No negative
values have been obtained. To conserve space and to avoid cluttering we use the normalized
SBC values. Since all SBC values are positive in this paper, the smallest normalized SBC is
used to determine the lag parameter p.

cointegration techniques to test the PPP, empirical evidence usually
supports the long run PPP hypothesis.15
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and Strauss (2000), Taylor and Sarno (1998), Papell (1997), Lothian (1997), and Oh (1996).

16. Consistent with the Fisher equation, the interest rate ratio is expressed in this form
and is numerically less variable than the simple ratio of percentage rates. Recently Cheng
(1999) has included the interest ratio variable when he conducts PPP testing and causality
detection. Cheng’s analysis concerns PPP between the U.S.A. and Japan using annual data,
and he finds evidence supporting PPP in the long run. In order to compare our findings with
Cheng’s results, the interest ratio variable has been included in the analysis.

17. Since the interest rate ratio has characteristics consistent with an evolutionary
process, it is reasonable that this series is I (1). The unit root tests show that the variable,
(1+U.S. discount rate), is I (1) and so is the variable, (1+Japanese discount rate). In this
instance we also find that the ratio of these two variables is I (1).

18. These model selection criteria are the combination of a measure for in-sample fitting
and a scaled penalty for over use of parameters (see Hannan and Deistler [1988]). Thus
in-sample fitting results have played a part in the model selection criteria decision making.

19. Cheng’s analysis also finds evidence of cointegration among these series.

For the test, monthly averaged data over the period 1974/1 to
2000/12 for the following three variables are obtained from
DataStream™:
Japanese yen to U.S. dollar: exchange rate (E) per U.S. dollar,
Japanese CPI to U.S. CPI: ratio of price levels (P),
(1+U.S. discount rate)/(1+Japanese discount rate): interest rate ratio
(IR).16

The y vector comprises log(E), log(P), as well as log(IR). The unit
root tests indicate that all three variables are I(1).17 To select the optimal
ZNZ patterned VECM, we start with a maximum lag of 24 to search the
optimal subset VECM model. Among the 225 possible candidate subset
VECM models, the optimal subset VECM selected has a maximum lag
of 16. As we use monthly observations VECM modeling is able to
accommodate both long-term and dynamic responses including seasonal
effects. Thus it is reasonable that the search algorithm has produced a
maximum lag of 16.

Given the framework of this subset VECM, we then select the
optimal ZNZ patterned VECM in terms of model selection criteria.18

The optimal patterned VECM identified is presented in table 2.
The presence of the long-term cointegrating relationships shown in

table 2 is consistent with PPP holding within the I(1) system and across
the Japanese and U.S. exchange markets.19 The selected pattern of the
cointegrating vector also demonstrates some interesting findings. In
relation to PPP, the positive relation between log(E) and log(P) and the
positive relation between log(E) and log(IR) indicate that an increase in
P or an increase in IR leads to a depreciation of the yen. This result is
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FIGURE 2. — Histogram of Roots for the VECM Shown in Table 2
Minimum: 1.052 Median: 1.143 Maximum: 1.336

consistent with economic intuition. For instance, when the price level
in Japan is higher relative to the price level in the U.S., the yen would
depreciate in order to retain PPP. Further, when the interest rate in
Japan relative to the interest rate in the U.S. decreases, there is an
associated depreciation of the yen. 

In reference to the Granger causal relations among the variables,
feedback relations exist between the pair of log(P) and log(IR), and the
pair of log(E) and log(IR). Direct Granger causation exists from log(E)
to log(P). Although there is no direct Granger causation from log(P) to
log(E), indirect causation exists from log(P) to log(E) via log(IR). We
therefore conclude that a Granger causal relation (directly or indirectly)
exists between log(E) and log(P). Hence, the feedback within the system
is complete and shocks to any one of the variables will be transmitted
through the system. In addition, no instantaneous causality is detected
among the variables.

Figure 2 shows that all roots detected lie outside the unit circle (>1).
This latter finding shows that the selected model has no unit roots or
unstable roots. Thus the model is a stable one. Also a strong dynamic
structure is found, and cointegrating vectors are identified. Complete
causality patterns, including both non-causality and indirect causality
are also given. Therefore the model is a powerful one. Also, to check
the adequacy of the model fit, the results in table 2 support the
hypothesis that the residual vector is a white noise process.
 
V. Conclusion

In this paper three contributions have been made in the analysis of
vector financial time series where causality detection and cointegration

 

Frequency 

 

Root

0

2

4

6

8

0.8856 0.9805 1.075 1.17 1.265 1.36 
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investigation are important. First, we have shown that ZNZ patterned
VECM modeling not only accommodates long-term and dynamic
responses for analyzing cointegrating relations, but also provides a
single framework for detecting direct and indirect causality among the
variables. Compared with full-order VECM modeling, patterned VECM
modeling is a more effective means of causality detection and the
associated cointegration investigation for time series of integrated order
I(d), where the structure is truly patterned.

Second, the paper shows how, in a limited context, ZNZ patterned
VECM modeling can be applied to studying the relationships among
financial variables. Specifically, the evidence here shows that money
supply (M3) is a source of financial and economic influence on the
Euro.

Third, a general outcome of previous studies indicates that long-term
PPP may not hold with high-frequency data. In this paper, support for
PPP is found using monthly data between Japan and the U.S. The
findings indicate that both direct and indirect causality exist among
prices, interest rates and the exchange rate. This evidence sheds light on
the adjustment mechanisms through which PPP is achieved. In addition,
it is clear that the proposed ZNZ patterned VECM modeling allows
better modeling insights in conducting financial time-series analysis. 
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