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The main goal of this paper is to develop a flood management model that
takes into account the specifics of catastrophic risk management: highly
mutually dependent losses, the lack of information, the need for long-term
perspectives and explicit analyses of spatial and temporal heterogeneities of
various agents such as individuals, governments, and insurers. We use modified
data from a pilot region of the Upper Tisza river, Hungary, to illustrate the
evaluation of a public multi-pillar flood loss-spreading program involving
partial compensation to flood victims by the central government, the pooling of
risks through a mandatory public catastrophe insurance on the basis of
location-specific exposures, and the demand for a contingent ex-ante credit to
reinsure the insurance’s liabilities. GIS-based catastrophe models and stochastic
optimization methods are used to guide policy analysis with respect to
location-specific risk exposures. We use economically sound risk indicators
leading to convex stochastic optimization problems strongly connected with
nonconvex insolvency constraint, VaR and CVaR (JEL G22, G28, C61).
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I.  Introduction

Losses from human-made and natural catastrophes are rapidly
increasing. Within the last three decades the direct damages from
natural disasters have increased nine-fold, Borch (1999). The main
reason for this is the clustering of people and capital in hazard-prone
areas as well as the creation of new hazard-prone areas, a phenomenon
that may be aggravated by a lack of knowledge of the risks. It is
estimated that within the next 50 years more than a third of the world’s
population will live in seismically and volcanically active zones; see
National Research Council (1999). Analysis of insurance companies
shows that because of economic growth in hazard-prone areas, damages
due to natural catastrophes have grown at an average annual rate of 5
percent, see Froot (1997). 

This alarming human-induced tendency calls for integrated
approaches to risk management allowing, in particular, to demonstrate
that investments in risk management is a welfare generating strategy.
The importance of integrated approaches for management of financial
risks is emphasized in Mayers and Smith (1983) and Yang (2000). In
particular, Yang (2000) argues that due to skewness of financial risks
the Value-at-Risk (VaR) has become a very popular measure of risk.
Catastrophes represent new challenges. Arrow (1996) admits that rare
catastrophic risks affecting large communities cannot be properly
treated by standard economic models. They call for robust combinations
of various ex-ante and ex-post risk management decisions including
deliberate selection of catastrophic risks for pooling by using
appropriate stochastic optimization models; e.g., Borch (1999),
Ermolieva et al.([1997) and Thomas (1994). In other words, simple
basic ideas of risk pooling (Borch [1962]) are transformed into
challenging stochastic decision-making problems (Erolieva [1997]).

This paper reports on the development of an integrated catastrophic
risk management model necessary for the Upper Tisza river basin,
which has been carried out as part of a joint IIASA-Sweden-Hungary
project on flood risk management in the Upper Tisza Basin. The main
issue is to address the specifics of catastrophic risks: highly mutually
dependent endogenous losses, the lack of historical location-specific
observations (unknown risks), the need for long-term perspectives,
robust strategies, and explicit treatment of spatial and temporal
heterogeneities of various agents such as individuals, governments and
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insurers. We propose a method allowing to deal with significant
computational complexities of arising optimization problems. 

The importance of integrated approaches is especially evident in
Hungary, where 23 percent of the country is endangered by riverine
floods. Only the Netherlands has a similar degree of risk, with 20
percent of the country under sea level. In Hungary and throughout the
world, the losses from floods and other natural disasters are mainly
absorbed by the immediate victims and their governments, e.g.,
Kleindorfer and Linnerooth-Bayer (2000) and Linnerooth-Bayer and
Armendola (2000). The insurance industry and its premium payers also
absorb a portion of catastrophic losses, but even in the wealthy
countries this share is relatively small. 

With increasing losses from floods, the Hungarian government is
concerned with escalating costs for flood prevention, flood response,
compensation to victims, and public infrastructure repair. Many
government officials would like to increase the responsibility of
individuals and local governments for flood risks and losses. Local
governments may be more effective in the evaluation and enforcement
of loss-reduction and loss-spreading measures, but this is possible only
through location-specific ex-ante analysis of potential losses, the mutual
interdependencies of these losses, and the sensitivities of the losses to
new risk management strategies. 

The lack of ex-ante designed strategies for dealing with increasing
catastrophic losses was emphasized by Froot (1997) who concludes that
losses from disasters

 “...are paid ex-post by some combination of insurers and reinsurers
(and their investors), insured, state and federal agencies and taxpayers,
with only some of these payments being explicitly arranged ex-ante.
This introduces considerable uncertainty about burden sharing into the
system, with no particular presumption that the outcome will be fair.
The result is incentives for players to shift burdens towards others, from
the homeowner who builds on exposed coastline, to insurers who write
risks that appear highly profitable in the absence of a large event ... But
most importantly, bad or inefficient risk sharing raises the cost of capital
for companies and requires returns for households, reducing the amount
of profitable investments and the rate of growth of the economy.… it is
worth noting that the gains from higher growth rate are huge ….” 

For Hungary, facing special problems of a poor and immobile
population, ex-ante mechanisms to fund the costs of recovery and, in
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particular, the establishment of a multi-pillar flood loss-sharing
program, are especially important. 

In this paper we illustrate the design of such a program assuming
that for the first pillar the government would provide compensation of
a limited amount to all households that suffer losses from flooding. As
a second pillar, a mutual catastrophe fund would be established by
pooling risks through a mandatory public catastrophe flood insurance
on the basis of location-specific risk exposures. It is assumed that the
governmental financial aid is regulated through this fund. As a third
pillar, a contingent credit may also be available to provide an additional
injection of capital to stabilize the system. 

The analysis of possible gains and losses from different
arrangements of the program is a multi-disciplinary task, which takes
into account the frequency an intensity of location-specific hazards, the
stock of capital at risk, its structural characteristics, feasible decisions
and different measures (in particular, engineering, financial) of
vulnerability. These efforts require the development of the so-called
catastrophe models, seeWalker (1997). 

The aim of catastrophe models is to generate potential samples of
mutually dependent losses for a given vector of policy variables. For
example, when there is a lack of historical data, models can estimate
distributions of losses and gains for different locations, households,
insurers, and governments. This is critically important in the case of rare
events or new policies that have never been implemented in practice.
The catastrophe model opens up the possibility for "if - then" analysis,
which allows the evaluation of a finite number of policy alternatives.
However, these analyses may run quickly into an infinite number of
possible combinations (see discussion in Section 3). 

As Walker (1997) admits, there is an urgent need for incorporating
catastrophe models into more comprehensive catastrophic risk
management models. The main goal of this paper is to demonstrate such
a possibility by using data from the case study in the Upper Tisza basin.
We slightly modified initial data in order to better illustrate implications
for financial ex-ante decisions. In particular, we selected a specific
loss-sharing program among many others analyzed for this region. For
an analysis of other loss-sharing programs for seismic prone regions in
Italy and Russia see Amendola et al. (2000 a,b) and Ermoliev et al.
(2001).

Section II discusses the main features of a GIS-based catastrophe
model developed for the Upper Tisza pilot region that simulates samples
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of potential location-specific losses. Traditional insurance and finance
quantify extreme events in monetary units Embrechts et al. (2000). The
proposed catastrophe model deals with non-quantifiable (in this sense)
events and multivariate distributions of extreme values, i.e., with the
cases which are not sufficiently treated within the conventional extreme
value theory.

Section III discusses the shortcomings of “if-then” analysis and
outlines general ideas of Adaptive Monte Carlo (AMC) optimization
proposed by Ermolieva (1997) and Ermolieva et al. (2000). The AMC
optimization technique is compared with known AMC simulation
proposed by Pugh (1966) to improve only the efficiency of the
sampling. The AMC optimization is used for solving analytically
intractable optimization problems which require decision-specific
simulations for estimating of objective and constraints functions. The
use of other search methods, such as genetic algorithms is practically
impossible due to time-consuming evaluation of intermediate solutions.

Section IV describes a spatial and dynamic stochastic optimization
model for evaluation of the selected public multipillar flood loss
spreading program in the Upper Tisza region. The model emphasizes the
cooperation of various agents in dealing with catastrophes. The solution
to catastrophic risk management, especially in small economies with
limited risk absorption capacity, cannot be accomplished without the
pooling of risk exposures; see the discussion in Pollner (2000) and
Cummins and Doherty (1996). The model involves pooling risks
through mandatory public catastrophe flood insurance based on
location-specific exposures, partial compensation to the flood victims
by the central government, and a contingent credit to the mandatory
public insurance. Definitely this program encourages accumulation of
own regional capital to better “buffer” against the involved risks. In
order to stabilize the program we use economically sound risk indicators
such as expected overpayments by “individuals” (cells of flood-prone
areas) and an expected shortfall of the mandatory insurance. We use
these indicators together with the so-called stopping times to orient the
analysis towards the most destructive scenarios. The explicit
introduction of ex-post borrowing as a measure against insolvency
enables us to approximate the insolvency constraint by a convex
optimization problem, whereas the use of the contingent credit leads to
the Conditional-Value-at-Risk (CVaR) type of risk measures. 

Numerical experiments in section V indicate a strong dependence of
demand for contingent credit on the composition of other risk
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management decisions. 
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FIGURE 1.—Modules of Catastrophe Model

II.  Catastrophe Model

As is shown in figure 1, the catastrophe model developed for the pilot
region of the Upper Tisza river consists of five sub-models (modules):
the "River" module, the "Inundation" module, the "Vulnerability"
module, the "Multi-Agent Accounting System", and the "Variability" 
module.
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The river module calculates the volume of discharged water to the
pilot region from different river sections for given heights of dikes,
given scenarios of their failures or removals, and rainfalls. The latter are
modeled by upstream discharge curves. Thus, formally, the River
module maps an upstream discharge curve into the volume of water
released to the region from various sections. The underlying sub-model
is able to estimate the discharged volume of the water into the region
under different conditions, for example, if the rain patterns change, if
the dikes are heightened, or if they are strengthened or removed.

The next module is the spatial GIS-based Inundation sub-model. For
the pilot region it contains 1500 by 1500 grids. This module maps water
released from the river into levels of standing water and thus it can
estimate the area of the region affected by different decisions. 

The vulnerability module maps spatial patterns of released water
into economic losses. This module calculates direct losses and may
include possible cascading effects, such as floods causing fire and its
consequences. It may also include loss reduction measures, e.g., new
land-use modifications and flood preparedness measures. This module
is able to indicate changes in economic losses from changes in risk
reduction measures.

The multi-agent accounting system (MASS) module maps spatial
economic losses into gains and losses of agents. These agents are the
central government, a mandatory catastrophe insurance (pool) and
“individuals” (cells).

Given sufficient data, the aforementioned sub-models can generate
scenarios of losses and gains at different locations for specific scenarios
of failures, rainfalls, risk reduction measures and risk spreading
schemes. But there are significant uncertainties and a considerable
variability in these losses and gains. For example, a 50-year flood may
occur in 5 days or in 70 years. 

Insurers are particularly concerned about variability since they may
not have the capacity to cover large losses. In an attempt to maintain
their solvency, they may charge higher premiums, which may result in
overpayments by the insured. Alternatively, insurers may undercharge
contracts. 

Insurers are also concerned about loss-reduction measures. A higher
dike may fail and cause more damages in comparison to a dike without
modification. The Variability module, a Monte Carlo model, transforms
spatial scenarios of losses and gains among agents into histograms of
probability distributions. For example, it derives histograms of direct
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losses at a location or a subregion. It also calculates histograms of
overpayments and underpayments for different agents (see section V).

III.  Adaptive Monte Carlo Optimization

The following simple example illustrates shortcomings of the
straightforward “if-then” scenario analysis. Let us assume that an
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FIGURE 2. The Adaptive Monte Carlo Optimization Model

insurer in the region can have different policies regarding the extent of
coverage that it offers, say 0%, 10%, 20%,…, 100%, i.e., altogether
eleven alternatives. For ten locations the number of possible policy
scenarios is  1011. With one second per module run, the computer time
required for the evaluation approaches 100 years. Therefore, with 100
locations the straightforward "if - then" analysis runs into eternity. The
same computational complexity arises in dealing with location-specific
premiums or investments in different segments of dikes.

The fundamental question concerns the evaluation of a desirable
policy without the exact evaluation of all the options. The complexity
of this task is due to analytical intractability of stochastic catastrophe
models, generating only random values of goal functions and often
requiring a large number of simulations for estimating outcomes of a
single decision. 

The standard optimization methods imply that the goal (objective
and constraints) functions are exactly calculated, i.e., for a given
feasible solution these functions are calculated without an additional
sampling procedure. Therefore, in general cases, we have to rely on the
stochastic optimization methods in particular on the so-called adaptive
Monte Carlo optimization, e.g., Ermolieva et al. (2003), Ermolieva
(1997) and Ermoliev et al. (2000). 

“Adaptive Monte Carlo” is a technique that makes on-line use of
sampling information to sequentially improve the efficiency of the
sampling itself, see Pugh (1966).  We use “adaptive Monte Carlo
optimization” in a rather broad sense, i.e. the efficiency of the sampling
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procedure is considered as a part of more general on-line improvements
with respect to different decision and goals. 

The adaptive Monte Carlo optimization model for the Upper Tisza
region consists of three interacting blocks: feasible decisions, the Monte
Carlo catastrophe model, and indicators; see figure 2. 

The block feasible decisions represents all feasible policies for
coping with floods. In general, they may include feasible heights of
dikes, insurance coverage, land use modifications, etc. These variables
affect performance indicators such as profits of insurers, underpayments
or overpayments by the insured, costs, insolvency and stability
indicators. 

The essential feature is the feed-back mechanism updating decisions
towards specific goals. The updating procedure relies on stochastic
optimization techniques as is discussed in section V. Losses are
simulated by the catastrophe model, causing an iterative revision of the
decision variables after each simulation run. In a sense, the adaptive
Monte Carlo optimization simulates in a remarkably simple and
evolutionary manner the learning and adaptation process on the basis of
the simulated history of catastrophic events. 

IV.  The Stochastic Optimization Model 

Stochastic optimization provides a framework for the iterative revision
of decisions embedded in the catastrophe model. These decisions
influence the contribution of location-specific risks on the overall
catastrophe losses. In the model for the Upper Tisza region we use
approaches similar to those in Amendola et al. (2000), Emolieva et al.
(1997) and Ermoliev et al. (2000, 2001). 

The main idea is based on subdividing the study region into m cells,
j = 1, 2,..., m. These cells may correspond to a collection of households
at a certain site, a collection of grids (zones) with a similar land-use
structure, or an administrative district or a grid with a segment of a gas
pipeline. 

The choice of cells provides a desirable representation of losses. In
our case, the cells consist of the value of the physical structures.
Catastrophes, which are simulated by the catastrophe model, affect at
random different cells and produce mutually dependent at time t losses
Lj

t . These losses can be modified by various decision variables. Some
of the decisions reduce losses, say a dike, whereas others spread them
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on a regional, national, and international level, e.g., insurance contracts,
catastrophe securities, credits, and financial aid. 

If x = (x1, x2,...,xn) is the vector of the decision variables, then Lj
t fro

cell j and time t depend on the decision variables x, i.e., Lj
t(x). In the

case of the Tisza river, for example, we can think of Lj
t(x) as Lj

t being
affected by the decisions of the insurance to cover location-specific
fractions (or layers) of losses Lj

t,, j = 1, 2,... ,m.
In the most general case, vector x comprises decision variables of

different agents, including governmental decisions, such as the height
of a new dike or a public compensation scheme defined by a fraction of
total losses Σj Lj

t,. The insurance decisions concern premiums paid by
individuals and the payments of claims in the case of catastrophe. There
are complex interdependencies among these decisions, which call for
the cooperation of agents. 

For example, the partial compensation of catastrophe losses by the
government enforces decisions on loss reductions by individuals and,
hence, increases the insurability of risks, and helps the insurance to
avoid insolvency. On the other hand, the insurance combined with
individual and governmental risk-reduction measures can reduce losses,
compensations and government debt and stabilize the economic growth
of the region and the wealth of individuals.

In the following we do not consider the most general situation, e.g.,
we consider only the proportional compensation by the government,
proportional insurance coverages, and we do not use discount factors.
The long time horizons of our model require new approaches to the
discounting, since traditional discount factors (typical for the existing
financial markets) dramatically reduce values beyond a few decades. In
fact, the use of so-called stopping time in our model induces implicit
discounting associated with the time spans of catastrophic events, see
Ermoliev and Wets (1988). Unfortunately, the discussion of this
important fact is beyond the scope of this paper.

In this application the system is modeled until a first catastrophic
flood, which occurs within a given time horizon. We define this moment
as the stopping time. For the Upper Tisza region this event is associated
with the break of a dike that may occur only after a 100-year, 150- or
1000-year flood. They are characterized by so-called upstream discharge
curves and the probability of breaking each of the three dikes. The
discharge curves characterize the amount of water incoming in time to
the given section of the river. The timing of the first catastrophic flood
significantly affects the accumulation of risk reserves by the insurance,
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and total payments of individuals; for example, a 100-year flood with
the break of a dike may occur in two years.

Let τ be a random (stopping) time to a first catastrophe within a time
interval [0, T], where T is some planning horizon, say 50 years. If no
catastrophe occurs, then τ = T. Since τ is associated with the break of a
dike, the probability distribution of τ is, in general, affected by some
components of vector x, e.g., by decisions on dike modifications, the
land use changes, building reservoirs, etc. In this paper we discuss only
the case when τ does not depend on x, i.e., we assume that the
distribution of τ follows a mixed geometric distribution according to
identified scenarios of floods and probabilities of dike breaks. 

Let Lj
τ be random losses at location j at time t = τ. In our analysis we

evaluate the capacity of the mandatory public catastrophe insurance in
the upper Tisza region only with respect to financial loss-spreading
decisions. Let us use a special notation for their components such as πj,
φj, ν and y. If πj is the premium rate paid by location j to the mandatory
insurance, then the accumulated mutual catastrophe fund at time τ
together with the proportional compensation νΣjLj

τ by the government
is equal to 

, (1)1 j j j jj j j
e L Lτ ττ π ν ϕ= + −∑ ∑ ∑

where 0 < φj < 1, is the percent of insurance coverage for cell j. Thus,
the pair (πj, φj) defines the insurance contract with a location j. We
assume that the compensation to victims by the government is paid
through the mandatory public insurance. The stability of the insurance
program depends on whether the accumulated mutual fund together with
the governmental compensation is able to cover claims, i.e., on the
probability of event e1 > 0.

The stability also depends on the willingness of individuals to accept
premiums, i.e., with the probability of overpayments:

, (2)2 0j j je Lττ π ϕ= − ≥

for j = 1, 2, ..., m. Apart from the compensation νΣjLj
τ(x), the

government arranges a contingent credit y with a fee q to improve the
stability of the mandatory insurance by transforming event (1) into (3):

 (3)3 0.j j j jj j j
e L L y q yτ ττ π ν ϕ τ= + − + − ≥∑ ∑ ∑
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Here we assume that the mandatory insurance pays the fee τ π q as long
as there is no occurrence of dike break. If the break occurs, the
mandatory insurance rapidly receives the credit y, whereas the
government pays back y. The advantages of this financial arrangement
in contrast to catastrophic bonds are discussed in Pollner (2000).

The difference between compensation νΣjLj
τ and contingent credit y

is significant: the outflow of fees is smooth, whereas the compensation
of claims has a sudden impact at time τ, and without y it may require a
higher government compensation (greater ν) possibly exceeding the
available budget. Therefore, without ex-ante contingent injections of
capital y the diversion of capital from other governmental needs may
occur. 

Let us note that the budget constraint, which is not considered
explicitly in this model, raises a general question on the optimal
dynamic management of the available budget in order to increase the
stability of the mandatory insurance and its efficiency. For example,
besides the contingent credit, a reasonable option may also be to invest
some money in liquid assets. The main aim of our analysis in this paper
is narrower: the evaluation of the mandatory public insurance capacity
and the demand for contingent credit. 

Inequalities (2)-(3) define important events, which constrain the
choice of the decision variables specifying the insurance program, i.e.,
the compensation rate ν by the government, coverages by the insurance
company φj, premiums πj, and credit y with fee q. Let us emphasize that
in the contract (πj, φj) the premium πj is treated as a decision variable
satisfying “fair” equilibrium equations (2)-(4). As we show in Section
5 the use of standard actuarial premiums may not be appropriate for
catastrophic risks. The values of e2 and e3 and likelihood of events
(2)-(3) determine the stability (resilience) of the program. In a rough
way this can be expressed in terms of the probabilistic constraint

, (4)( )2 30, 0P e e p≥ ≤ ≤

where p is a desirable probability of the program’s default, say a default
that occurs only once in 100 years. Constraint (4) is similar to the
so-called insolvency constraint, a standard for regulations of the
insurance business, see Stone (1973).  In the stochastic optimization
constraint (4) is known as the chance constraint, see Ermolieva et al.
(2003). Unfortunately, this constraint does not account for the values
e2 and e3 which is important for the government, since it cannot ignore
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the region in distress. 
Let us assume that vector x consists of the components πj, φj and y.

The main goal is formulated as the minimization of expected total losses

( ) ( ) ( )1 j j jj j
F x E L E L yτ τϕ γ ν= − + +∑ ∑

subject to the chance constraint (4). 
The expected losses function F(x) requires further discussion. It

reflects the government’s interest to reduce uncovered losses and, at the
same time, to minimize the governmental payments ν E GjLj

τ + y with a
weight 0 < γ < 1. In fact, the evaluation of optimal ν and y requires
explicit introduction of the governmental catastrophe budget and its
insolvency constraint similar to (2)-(4). 

The size of this budget is itself a key decision variable, which calls
for essential modifications of the model. Therefore, in our numerical
experiments in section V, we use a practically feasible option for ν and
analyze only the demand for contingent credit y. This is derived from
the evaluation of mandatory public catastrophe insurance to sustain
against catastrophic floods.

Constraint (4) imposes significant methodological challenges even
in cases when τ(x) does not depend on x and events (2)-(3) are defined
by linear functions of decision variables; see discussion in Ermoliev and
Wets (1988), p. 8, and Ermoliev et al. (2000, 2003). This constraint is
of “black-and-white” character, i.e., it accounts only for a violation of
(2)-(3) and not for its size. 

There are important connections between the minimization of F(x)
subject to highly non-linear and possibly discontinuous chance
constraints (4) and the minimization of convex functions, which have
important economic interpretation. Consider the following function

( ) ( ) { }max 0, j j j jj j j
G x F x a E L L y q yτ τϕ ν τ π τ= + − − − +∑ ∑ ∑

(5)

{ }max 0, j j jj
E Lτβ τ π ϕ+ −∑

 
where α and β are positive parameters. This function is affected in a
rather complex manner by probability distributions of Lj

τ and τ  modified
by decisions πj, φj, ν and y.

It is possible to show that for large enough values of α and β, the
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minimization of function G(x) generates solutions x with F(x)
approaching the minimum of F(x) subject to (4) for any given level p;
see Ermolieva et al. (2003), ch. 2. 

The minimization of G(x) defined by (5) has a simple economic
interpretation. Function F(x) comprises expected direct losses
associated with the insurance program. The second term includes the
expected shortfall of the program to fulfill the obligations; it can be
viewed as the expected amount needed for this purpose of ex-post
borrowing with a fee α. Similarly, the third term can be interpreted as
the expected ex-post borrowing with a fee β needed to compensate
overpayments. Obviously that large enough fees α and β will tend to
preclude the violation of (2)-(3). Thus, the ex-post borrowing with large
enough fees allows for a control of the insolvency constraints (4). 

It is easy to see that the use of the ex-post borrowing (expected
shortfall) in the second term of G(x) in combination with the optimal
ex-ante contingent credit y controls the CVaR type risk measures.
Indeed, the minimization of G(x) is an example of stochastic min-max
problems, see Ermolieva et al. (2003), ch. 22. 

By using standard optimality conditions for these problems we can
derive the optimality conditions for the contingent credit  . For example,
assuming continuous differentiability of G(x) which follows in
particular from the continuity of underlying probability distributions of
Lj

t, despite non-smooth random functions under the expectation E, it is
easy to see that the optimal level of the credit γ > 0 satisfies the equation

(6)( ) 0.j j j jj j j

G
P L L yτ τγ α ϕ ν τ π

γ
∂ = − − − > =
∂ ∑ ∑ ∑

Thus, the optimal amount of the contingent credit is defined as a
quantile of the random variable ΣjφjLj

τ –ν Σj Lj
τ –τ Σ πj specified by the

ratio γ/α, which has to be not greater than one. Hence, the expectation
in the second term of G(x) for optimal y is taken under the condition that
y is the quantile of ΣjφjLj

τ –ν Σj Lj
τ –τ Σ πj . This is in accordance with the

definition of CvaR, see Artzner et al. (1999) and Rockafellar and
Uryasev (2000). More general risk measures emerge from the optimality
conditions of G(x) with respect to premiums πj and φj. 

The importance of such an economically sound risk measure as
expected shortfall was emphasized by many authors, e.g., Artzner et al.
(1999), Embreechts et al. (2000), Jobst and Zenios (2001), and
Rockafellar and Uryasev (2000). Important connections of CVaR with
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the linear programs were discussed in Artzner et al. (1999) and
Rockafellar and Uryasev (2000).  

Let us note that G(x) is a convex function in the case when τ and Lj
τ

do not depend on x. In this case the stochastic minimax problem (5) can
be approximately solved by linear programming methods; see the
general discussion in Ermolieva et al. (1997). The main challenge is
concerned with the case when   τ and Lj

τ are implicit functions of x.
Then we can only use the adaptive Monte Carlo optimization. Let us
outline only the main idea of these techniques. More details and further
references can be found in Ermolieva (1997), Ermoliev et al. (2000 and
2001), and Ermoliev and Wets (1988).

Assume that vector x incorporates not only risk management
decision variables but also includes components affecting the efficiency
of the sampling itself. An adaptive Monte Carlo procedure searching for
a solution minimizing G(x) of type (5) starts at any reasonable guess x0.
It updates the solution sequentially at steps  k = 1, 2,... by the rule xk+1

= xk –ρk ξk, where numbers ρk are step-sizes satisfying the condition 

.2

0 0
andk kk k

ρ ρ∞ ∞

= =
= ∞ = ∞∑ ∑

For example, the specification ρk =(1/k) +1 would fit. 
The random vector ξk is an estimate of the gradient Gx(x) or its

analogs for nonsmooth function G(x). This vector is easily computed
from random observations of G(x). For example, let Gk be a random

observation of G(x) at x = xk and be a random observation of G(x)kG
at x = xk +δk h

k. The numbers δk are positive,  δk60 , k64, and hk is an
independent observation of the vector h with independent and uniformly
distributed on [–1, 1] components. Then ξk can be chosen as 

.( )k k k k kG G hξ δ⎡ ⎤= −⎣ ⎦

The formal analysis of this method, in particular, for discontinuous goal
functions, is based on general ideas of the stochastic quasigradient
methods; see Ermolieva et al. (2003) for further details.

V.  Demand for Ex-ante Contingent Credit  

According to the model of section IV, the demand of the pilot region for
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a contingent credit significantly depends on the capacity of the
mandatory public insurance to sustain against catastrophic floods, the
fraction ν of the government compensation and on the interplay of
various factors, e.g., on the occurrence of floods and the reliability of the
flood protection system (e.g., dike failures). In this section we discuss
some numerical experiments using a modification of real data collected
in the Upper Tisza region. The main purpose of the following discussion
is not the results of our findings, but rather the illustration of the
proposed model. 

The case study region consists of 1,500×1,500 grids, and for each
grid there are data on the vulnerability of its content. These grids are
further aggregated into 40 cells.

The flood occurrences are modeled according to specified scenarios
of catastrophic floods and dike breaks. There are three dikes allocated
along the pilot river branch. Each of them may break under the
probability of a 100-year, 150-year, and 1,000-year flood. 

In this paper, we take into account only structural losses. The
simulation time horizon is assumed to be 50 years. The number of
simulations (scenarios) in a single experiment was 10,000. A contingent
credit in our model is introduced to stabilize equation (1) according to
equation (3). The demand for the credit is, therefore, defined by negative
values of indicator e1 or e3 for optimal (or given) solutions φj, πj

minimizing (5) for  y = 0 and given ν. This defines also the lack of
capacity for the mandatory insurance. 

Figures 3 and 4 illustrate the results of the experiments with ν = 0.25
and y =0. The horizontal axis shows the total demand for contingent
credit, negative e1, whereas the vertical axis shows the number of
simulations and the cumulative probability.

In the numerical experiments we analyzed the capacity of mandatory
insurance and the demand for the credit under different assumptions on
premiums πj, j = 1, 2, ..., m,  where m is the number of cells. In our case
m = 40. 

1. Premiums calculated according to the actuarial principle based on
location-specific average losses. Coverages φj are derived from the
minimization of function (5).

2. “Fair” premiums are calculated by minimizing function (5) with
respect to πj and φj. This accounts for the distribution of losses for
each location and the “equilibrium” defined by equations (2) and (3).
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FIGURE 3.—Actuarial Premiums.

In practical calculations histograms for constraints (4) calculated
simultaneously with the minimization of (5) provide a signal for
increasing or decreasing “penalties” (risk factors) α and β to achieve a
satisfactory level p. Intuitively, greater α and β values lead to constraints
(4) with smaller p. On the other hand, this may considerably reduce
insurance coverages of catastrophic exposures. A trade-off between
these two effects can be resolved by using some additional
considerations, e.g., political considerations or purely visual character
of histograms, which cannot be formalized in general within a single
model. This is similar to the standard welfare analysis.

According to our experiments, the premium for the first option equals
on average (per location and year) 0.87 million HF (Hungarian forints)
(exchange rate: one HF equals 0.003302 U.S. dollars). Coverages   are
derived by minimization (5) for α = β = N = 10. As we can see from
figure 3, the inflow of premiums is not enough to compensate the losses,
since e1 is often negative, which defines a certain safety (solvency) level
p for constraint (5). It is clear that in more than 2,000 scenarios out of
10,000 of simulated catastrophic events the mandatory insurance lacks
the capacity to cover losses. This calls for a more significant intervention
by the government through either increasing level compensations ν,
and/or through the contingent credit. 

“Fair” premiums improve the situation. Figure 4 illustrates the
changes in the total demand for contingent credit by using the optimal



Multinational Finance Journal224

FIGURE 4.—Optimal Premiums.

FIGURE 5.—Actuarial Premiums.

premiums calculated from the minimization of (6) for the same ν = 0.25,
y = 0 and N= 10. The model suggests a premium rate on average (per
location and year) equal to 0.83 million HF, which is lower than in the
first case. 

Figure 4 shows that the demand for contingent credit is also reduced
(fewer negative values on the horizontal axis). “Fair” premiums improve
also overpayments per year (see figures 5 and 6), i.e., the distribution of
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FIGURE 6.—Optimal Premiums.

FIGURE 7.—Actuarial Premiums.

 Σj max{0, τ πj –φj Lj
τ}/τ computed from the third term of G(x). 

Figures 7 and 8 show the distribution of uninsured losses computed
from the first term of G(x). Figures 9 and 10 show further reductions of
overpayments and the demand for contingent credit for N = 20, which
are, in fact, due to increase of uncovered losses.

The computer program (optimization part) was implemented in
Matlab on a DELL GX240 Personal computer. The solution time for 40
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FIGURE 8.—Optimal Premiums.

FIGURE 9.—Risk Coefficient, N =20.

cells and 10,000 iterations (scenarios) is 10 minutes. The optimization
procedure is easily restarted from different initial solutions, for new
compositions of cells, and distributions of random parameters. The
solution time slightly changes with the number of decision variables and
random parameters. It may increase with the increase of   (unreasonably
large   may cause degeneracy of c- level sets) and it also depends on the
rarity of catastrophes. An important idea to reduce this time is to use
faster versions of the Monte Carlo simulations. 
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FIGURE 10.—Risk Coefficient, N =20.

6. Concluding Remarks

Traditionally, the insurance industry manages independent risks by
pooling its exposures through contracts written on the basis of rich
historical data. This is not possible for rare catastrophic risks with
mutually dependent losses of high consequences. The proposed
optimization model incorporates a generator of catastrophic losses
(catastrophe model) allowing to optimize effects of dependent and
location-specific rare risks through iterative improvements of the
catastrophic exposures. An essential challenge is to develop a reduced
version of the catastrophe model allowing fast simulation of
catastrophes. It is important to understand that the main purpose of our
model is not to predict catastrophes but to provide insights into robust
combinations of different risk management decisions, increasing the
preparedness of the region for probable catastrophes. 

We demonstrated that the demand for a contingent credit
significantly depends on other pillars of the loss-spreading program for
the pilot region of the Upper Tisza river, Hungary. This corresponds to
the conclusion of Mayers and Smith (1983) on interdependencies of
individual portfolio decisions and the decision for insurance. 

In particular, our numerical experiments show that optimal
location-specific premiums of the mandatory public catastrophe
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insurance decrease the demand for contingent credit. It is easy to extend
this analysis to derive the optimal size of contingent credit. In particular,
an important task is to analyze effects of different risk reduction
measures, such as strengthening or removing some of the dikes.

Purely “toy” exercises show that the diversion of capital from direct
compensations to investments into loss reduction measures may
essentially reduce probability of losses. As a result, it increases
coverages of the mandatory public catastrophe insurance and reduces the
demand for cross-subsidies on country-wide and international levels; that
is, the demand for contingent credit. It is also important to analyze the
effects of adaptive sampling procedures (adaptive Monte Carlo
simulations), i.e., to enrich the set of decisions by components
controlling the efficiency of the sampling. 

The reduction of highly nonlinear and often discontinuous insolvency
constraint (4) to a minimization of a non-differentiable and, in our case,
a convex function (5) is a rather promising idea. The minimization of
function (5) can be viewed as a version of the so-called two-stage
stochastic optimization methods and stochastic min-max problems
focusing our analysis on critical extreme values. The dependency of the
proposed models on the stopping time brings new challenges only briefly
outlined in this paper.
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