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The aim of this paper is to identify whether the GARCH or the SV based
models provide the best goodness of fit to financial time-series data. To
investigate the issue, three different formulations for each type (i.e., the standard
model, the fat-tailed model, and the asymmetric model) are examined. The
models are first compared on theoretical grounds, then estimated using the daily
returns from four market indices, and finally subjected to some diagnostic tests.
The results demonstrate that for the standard formulation, the SV model fits data
better than the GARCH model, while the fat-tailed and the asymmetric models
roughly equivalent in describing the key features of returns. The results provide
a preliminary analysis for selecting the best model with which to forecast the
volatility of financial returns (JEL G0,G1).
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I. Introduction

In order to describe the stylized facts which typically characterize the
time series of financial returns, such as time-changing variance,
clustering, persistence, leverage effect, and strong autocorrelations in
the  squared returns, two different classes of parametric models, known
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as conditional variance models, are generally applied and studied in the
literature: the generalized autoregressive conditionally heteroskedastic
(GARCH) models (Engle [1982], Bollerslev [1986]) and the stochastic
variance or stochastic volatility (SV) models (Taylor [1986]).

Since Engle’s seminal paper (1982) proposing an ARCH model on
the basis of the fundamental distinction between conditional and
unconditional variance, financial econometrics literature in the field of
conditional variance models has witnessed an extraordinary growth,
both in theory and in applications, with the addition of new and more
powerful extensions, e.g., the GARCH model by Bollerslev (1986) and
the EGARCH model by Nelson (1991), which have dramatically
improved the fitting performances of the initial ARCH formulation.

Taylor (1986), on the other hand, offers an alternative with which to
model the conditional variance of financial returns, the stochastic
variance model. Together with its extensions (Harvey et al. [1994],
Harvey and Shephard [1996], Sandmann and Koopman [1998], Jacquier
et al. [2001], and Chib et al. [2001]), the proposed SV model captures
more qualitative features of financial returns. In comparison with
ARCH-GARCH models, which consider conditional variances as a
deterministic function of past returns, the SV models describe variance
(or rather the log-conditional variance) as a stochastic latent process,
which however can be estimated. Besides, ARCH-GARCH can be
easily estimated by the Maximum Likelihood and Quasi Maximum
Likelihood techniques, while, in the SV framework, the presence of the
latent variable makes estimation a harder task.

These difficulties however have boosted research into estimation
techniques, and now it is possible to choose among different estimation
methodologies: Generalized Method of Moments (Andersen and
Sørensen [1996]), which is an evolution of the earlier Moments
Matching applied by Taylor (1986; 1994) and Quasi Maximum
Likelihood (Ruiz [1994], Harvey et al. [1994] and Harvey and Shephard
[1996]). In addition, a number of simulation methodologies can be used:
Importance Sampling (Danielsson and Richard [1993]), Indirect
Inference (Gouriéroux et al. [1993]), Efficient Method of Moments
(Gallant and Tauchen [1996]), Monte Carlo Likelihood (Durbin and
Koopman [1997], Sandmann and Koopman [1998]), and Monte Carlo
Markov Chain (Jacquier et al. [1994 and 2001], Kim et al. [1998] and
Chib et al. [2001]). The first group of techniques for estimating SV
models (GMM and QML) are easy to apply and less time-consuming,
while the latter (IS, II, EMM, MCL, MCMC) sometimes appear to be
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more efficient but are often extremely time-consuming. 
The need for conditional variance models to help to ensure the best

fit to empirical data is due to the ever-increasing importance which
variance plays in modern financial theory and applications, in particular
in option pricing, risk management, the construction of optimal assets
portfolios and other issues. 

After analyzing and comparing at a theoretical level the two classes
of models, ARCH-GARCH and SV, they are fitted to the data and the
empirical results are compared, to contribute to the identification of the
best data-fitting model among the various ARCH-GARCH and SV
formulations considered here. In particular, for each class, three
formulations are chosen: a standard version, a fat-tailed and an
asymmetric one. For GARCH, this turns out to be the comparison of
GARCH(1,1) (Bollerslev [1986]), GARCH(1,1)-t  (Bollerslev [1987])
and EGARCH(1,1) (Nelson [1991]) models. For the SV models, the SV
standard (Taylor [1986]), the SV-t  (Harvey et al. [1994]) is compared
to the asymmetric SV (Harvey and Shephard [1996]). For the empirical
strategy to verify goodness of fit some diagnostic tests are carried out
for each class of models and between the two classes. 

This paper is organized as follows: Section II examines the
theoretical underpinnings and estimation of the GARCH and SV type
models.  Section III discusses the application of the aforementioned
models using financial time series data. Section IV presents the
summary of the results and conclusions.

II. Some Theoretical Aspects

A. Introduction to Conditional Variance Models

The econometric models most frequently applied to describe the stylized
facts of financial returns are based on the following general equation
(Taylor [1986], Harvey and Shephard [1993], Bollerslev et al. [1994],
Ghysels et al. [1996], Campbell et al. [1997]) 

(1)t t t tr μ ξ σ= +

where rt stands for the return at time t, ξt  is an IID random variable with
zero mean and unitary variance, and  σt is volatility at time. The variable
μt = μ(It) is a function of It, the information set available at time t
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(Andersen [1994]). It represents the trend (Ghysels et al. [1996]) or
rather, the mean or the level of the returns data generating process
(DGP). Usually, when returns are not correlated, μt is simply the sample
mean of the returns. In order to represent a possible linear structure, the
stochastic processes most frequently used are the ARMA (Box and
Jenkins [1976]). The mean μt can also include exogenous variables
(Bollerslev [1986], Harvey and Shephard [1993], Sandmann and
Koopman [1998), such as seasonal and days dummies or trading
volumes (Tauchen et al. [1996], Lamourex and Lastrapes [1994]). By
subtracting μt from rt it follows that

(2)t t ty ξ σ=

where yt = rt –μt. The main assumption in equation (2) is that yt is a
white noise, and for this reason yt is defined as the pre-whitened returns
series. With reference to equation (1), there are two possible sources of
variability in the model: the mean μt and volatility σt. Usually, the mean
is smaller in magnitude than volatility, suggesting that most of the
variability is due to the latter. 

Let us now consider a non-linear transformation (call it f ) of
volatility σt, which is represented as a function of past information It, 

. (3)( ) ( )t tf g Iσ =

Conditional on It, the main assumption is that yt is distributed as normal,

(4)( )2| 0, .ty I N σ∼

Given the general model described by equations (1) and (3) and
assumption (4), two different types of models can recognized, related to
the different way in which the functions f and g are specified and
parameterized (Shephard [1996]):  

Observation-driven models, also defined by Taylor (1986) as models
in which the variance changes are caused by past prices, where f (σt)
is a function of the realized returns until t.  

Parameter-driven models, otherwise defined as models in which the
variance changes are not caused by prices (Taylor [1986]), where
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f(σt) depends on a latent or unobserved variable.  

In the first class are the generalized autoregressive heteroskedasticity
models (GARCH and variants), while more frequently used among the
second class are the Stochastic Volatility  (SV) models.

For the GARCH models the function f is usually specified as the
square of volatility σt, g is structured as an ARMA process and includes
past squared returns and possibly past conditional variances (or
log-variances for the EGARCH). In this case, yt | (It = Yt) is distributed
as N(0,σ2)  (Engle [1982], Bollerslev [1986], Nelson [1991]), where It

is composed of the set of returns observed until time t–1.
The SV models f = ln(σt

2) is the logarithm of the conditional
variance,(as in the EGARCH specification) and g is usually specified as
the sum of an AR(1) process and a random error. Thus, the SV model
considers volatility as a stochastic variable. The conditional distribution
of yt is then the following (Taylor [1994]): 

( ) ( )( )| 0,exp ,t t t ty I h N h= ∼

where It is log-volatility, ht =σt
2 , regarded as a latent variable which can

be estimated on the basis of the observations on returns.  

B. GARCH Models

Referring to equation (2), in the GARCH(p,q) model the conditional
variance is characterized by 

(5)2 2 2
0

1 1

q p

t i t i j t j
i j

yσ α α β σ− −
= =

= + +∑ ∑

where p refers to the lags of the variable σt
2  and q to the lags of the

variable yt. When p=1 and q =1, the GARCH(1,1) model is obtained, 

(6)2 2 2
0 1 1 1 1t t tyσ α α β σ− −= + +

The GARCH model may be generalized by letting ξt in equation (2)
have a student t distribution with ν degrees of freedom. The importance
of this class of models, known as GARCH- t (Bollerslev [1987]), is due
to the fact that they are able to capture the excess kurtosis present in
many financial time series.  
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The EGARCH(p,q) model, on the other hand, considers the
logarithm of the conditional variance as follows 

(7)( ) ( )( ) ( )2 2
0

1 1

ln ln
q p

t i t i t i t i j t j
i j

Eσ α α ξ ξ γξ β σ− − − −
= =

= + − + +∑ ∑

where ξt are the standardized residuals. This model allows us to describe
the asymmetric effect which is often present in the returns series. As
explained by Nelson (1991), if αi > 0 a deviation of  ξt from its expected
value causes the conditional variance of yt, σt

2, to be bigger than it
otherwise would be. The parameter γ allows this effect to be
asymmetric: if γ =0, a positive ξt will have the same effect on volatilities
produced by a negative ξt of the same magnitude. But if  –1 < γ < 0,  a
positive ξt will increase future volatilities less than a negative ξt. Finally,
if γ < –1, a positive ξt will reduce future volatilities while a negative one
will produce the opposite effect.  

C. Stochastic Volatility Models

The basic stochastic volatility model is 

(8)2th
t ty e ξ=

(9)1t t th hα φ η−= + +

where ηt -NID(0, ση2), ht = ln(σt
2) is the volatility function and working

with logarithms ensures that σt
2 is always positive; ξt is a white noise

process with unit variance generated independently of ηt and |φ| < 1,

which ensures the strict stationarity of the process. It follows that ht is

stationary with mean αh = α/(1–φ) and variance σh
2 =  ση2/ (1–φ2). 

Despite a very parsimonious representation, this model captures
most of the empirical regularities found in financial time series (Ghysels
et al. [1996]). The component σt is known in financial literature as
volatility or conditional variance (see, for istance, Engle [1982],
Bollerslev [1986], Taylor [1994]). In particular, one interpretation of the
process ht, which has its origin in Clark (1973) and is refined in
Tauchen and Pitts (1983), is that stochastic volatility reflects the random
and uneven flow of new information to the financial markets. 
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Transforming yt of equation (8) by taking logarithms of the squares,
the following measurement equation of a linear state space model is
obtained

, (10)( )2 2ln lnt t t ty E hξ ε= + +

where gt = ln(ξt
2)–E(ln(ξt

2)). If ξt is distributed as a standard normal,
ln(ξt) follows a non-Gaussian distribution with mean ψ(1/2)–ln(½) .
–1.27 and variance  π2/2 (Ruiz [1994], Sandmann and Koopman [1998])
where ψ(A) is the digamma function (Abramovitz and Stegun [1970]).

Equation (8) may be written as 

(11)2th
t ty eβ ξ=

where β is a scale parameter that allows the state space model to be
rewritten as 

(12a)2ln t t ty hω ε= + +

(12b)1t t th hφ η−= +

where ω=ln(β2)+E(ln(ξt)). As ln(β2)= α/(1–φ), if the φ and β parameters

are known, it is easy to obtain the value of α.  
When ξt has a student t distribution with ν degrees of freedom,

equation (8) represent a SV-t model.  It can be shown (see, Harvey et al.
1994) that when ht is stationary, yt is white noise and from the properties
of the t distribution it follows that the unconditional variance
generalizes to 

2 2.
2

h heα σν
ν

+⎛ ⎞
⎜ ⎟−⎝ ⎠

In this case ξt of the equation (8) may be written 

(14),t

t
t

ς
κ

ξ =

for t =1, ..., T, where ζt is a standard normal variate and ν κt is
distributed, independently of ζt as a χ2  with ν degrees of freedom. Thus
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(15)( ) ( ) ( )2 2ln ln lnt t tξ ζ κ= −

and it follows that the mean and variance of ln(κt) are respectively
ψ’(ν/2) – ln(ν/2) and ψ’(ν/2), where ψ’(A) is the trigamma function
(Abramovitz and Stegun [1970]).  

When there is a dependence between ξt and ηt the model picks up the
kind of asymmetric behavior that is often found in stock prices (Schwert
[1989], Nelson [1991], Engle and Ng [1993], Nicolis [2000]). The
asymmetry refers to the impact of negative returns on predicted
volatility with respect to the impact of positive ones. For example, a
negative return tends to be associated  with an increase in predicted
volatility, suggesting a negative correlation between ξt and ηt of
equations (8) and (9).  

The linear state space form (13) can be modified to estimate
asymmetric models.  Harvey and Shephard (1996) observed that, even
if ξt and ηt in the equation (8), respectively, and equation (9) are
correlated, the disturbances in the linear state space form are
uncorrelated provided the joint distribution of ξt and ηt is symmetric.
Hence, as in the state-space transformation, taking the square of the
observations, the information on the dependence between ξt and ηt is
lost. Harvey and Shephard (1996) showed that this information can be
recovered by conditioning st, which is the sign of the observations,
which of course is the same as ξt. The linear state space form including
the asymmetric component becomes the following 

(16)2ln t t ty hω ε= + +

(17)* *
1t t t th h sφ μ η+ = = +

(18)
2 *

* * 2 *2

0
| ,

0
t t

t
t t

s
s IID

s
ε

η

ε σ γ
η γ σ μ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟−⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

∼

where μ* denotes the expectation taken conditional on ξt being positive,
μ*= E+(ηt), and γ* assigns a similar interpretation to variance and
covariance operators, γ*= cov(ηt, gt).

D. Estimation
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It is very quick and easy to estimate GARCH models through maximum
likelihood or quasi maximum likelihood via iterative numerical
algorithms (see, Engle [1982], Bollerslev [1986]). On the contrary, the
estimation procedure of SV is a very difficult task because the vector of
latent observations {ht}, for t = 1, 2,...,T, has to be integrated out of the
joint density of the volatility and returns in one T-dimensional
integration, 

(19)( ) ( ), |
TR

f y h dhΩ = Ω∫A

to obtain the likelihood function R(Ω), where Ω is the vector of the

parameters (α, ση, φ). This integral does not have an analytical solution.

So numerical methods (which are often very computer-intensive and
quite difficult to implement) must be employed for evaluation. This is
mainly what renders the SV formulation less attractive than the GARCH
one, and explains why the latter has been more widely adopted. On the
other hand, the computational problems it generates have created a
challenge for researchers to develop more efficient and
computer-intensive estimation methods such as QML, GMM, EMM and
MCMC (for a survey on a comparison of estimation techniques, see
Ghysels et al. [1996], Shephard [1996], Jacquier et al., [1994],
Sandmann and Koopman [1998] and Andersen et al. [1999]). In this
work, the QML approach based on the Kalman filter is considered for
estimating the different types of SV models (Harvey et al. [1994], Ruiz
[1994], Harvey and Shephard [1996]). The chosen estimation method
represents a good compromise between efficiency and computational
time consumption.  

Considering the equation (8) when  ξt ~ NID(0,1) if yt is squared and
logged, the model can be rewritten as 

(20a)2ln 1.27t t ty h ε= − + +

(20b)1t t th hα φ η−= + +

where gt= ln(ξt
2)–E(ln(ξt

2)) follows the χ2
1 distribution with mean zero

and variance π2/2. The QML method approximates the distribution of
gt by NID(0,π2/2). The system (20) represents the measurement and
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transition equations of the general linear state model in which the state
space form relates an observed time series yt to an unobserved state
vector ht. Using Kalman filter the Gaussian likelihood by the prediction

error decomposition is obtained. The parameter estimates of ω= (α, φ,
ση2) result from numerical optimization.  

The standard theory for the estimation of unobserved component
time series models with non-normal errors applies to the estimate of   ω
(Ruiz [1994]).  

When ξt in equation (8) is a student t variable with ν degrees of
freedom as given by (14), the variance of  of the model (20) is σg2 = π2/2

+ ψ’(ν/2). The estimated parameter set becomes ω* = (α, φ, ση2, σg2) with

the restriction σg2 > π2/2. The estimates of ω*  can be obtained by the
QML procedure approximating the distribution of gt by NID(0,σg2), and
maximizing the resulting quasi-likelihood function (see Ruiz [1994], for
the asymptotic theory).  

Let us consider now the estimation of the asymmetric SV model.
Assuming that the joint distribution of ξt and ηt is symmetric, the
disturbances in the linear state space form of (16) and (17) are
uncorrelated. For this, Harvey and Shephard (1996) suggest the

"unrestricted" QML method for estimating the parameters ω, φ, ση2, σg2,
μ* and γ*. The QML estimators are obtained by treating ηt and gt as
though they were normal and maximizing the prediction-error
decomposition form of the likelihood achieved via the Kalman filter.
This procedure estimates the parameters without any distributional
assumption, apart from the existence of fourth moments of ηt and ξt. As
a consequence it doesn’t provide an estimate of the parameters of the
joint distribution of ηt and ξt  which is denoted by ρ. Such an estimate
can be constructed by making a distributional assumption about ξt and
as well as ηt.
When the joint distribution of ηt and ξt is bivariate normal with
correlation ρ, E(ηt | ξt) = ρ ση ξt, thus 

. (21)* 2 0.7979η ημ ρσ π ρσ= =
Moreover, 

(22)( ) ( )* 2| | ln .7979 ln 1.1061t t tE Eη η ηγ ρσ ξ ξ ρσ ξ ρσ= − =
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(see Harvey and Shephard [1996], for detailed results). As for the
standard model, it can be shown that the QML estimator is consistent
and asymptotically normal. Even if conditioning on the sign st of the
observations complicates matters somewhat in that the covariance
between the two disturbances in equation (18) varies according to st,
consistency and asymptotic normality can nonetheless be demonstrated
(Harvey and Shephard [1996]).  

E. Differences and Analogies

From sub-sections A and C it stands out that the fundamental difference
between the GARCH and the SV models consists of a different
specification of the equation describing the conditional variance. Other
important differences refer to the sources of variability, restrictions on
parameters, stationarity conditions, unconditional kurtosis and
estimation techniques.  

Sources of variability and restrictions on parameters

The GARCH models have only one source of variability which stands
for the noise   in equation (1), while SV is characterized by two separate
sources of variability: the noise ξt in equation (8) and innovation ηt in
the volatility equation (9). The latter makes the conditional variance a
stochastic process and determines the degree of mixing of the returns.
In the GARCH class case, in particular when adopting a high order of
parameters, increasing problems in managing and interpreting parameter
estimates have to be tackled. Besides, it takes a lot of restrictions on
parameter values to guarantee that, for each  t the conditional variances
σt

2 are non-negative. In the EGARCH formulation the problem is solved
considering the logarithm of the variance. When fitting the SV model,
only a few restrictions are necessary to perform estimation, and the
parameter meanings are easy to interpret. As in the EGARCH
formulation, the SV model describes the logarithm of the variance, and
no other parametric bounds are required in order to estimate the model.

Parameterization and Stationarity Conditions

The squared returns of a generic GARCH model can be
re-parameterized as an ARMA process (Bollerslev [1986]). The squared
returns of the SV model behave like the ARMA (more precisely, an

ARMA(1,1)) as well, especially as exp(σt
2)/(1–φ2) 6 0 and φ 6 1

(Taylor [1986]). For this reason, the φ parameter takes on the same
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interpretation of  Σ αi + Σ βj, that is a measure of volatility persistence.
Moreover, in order to ensure the (weak) stationarity of the conditional
variance (and hence of the returns), the GARCH models require that 

Σ αi + Σ βj < 1 while the SV class needs |φ| < 1.  

Unconditional kurtosis

The widely used GARCH specification in the conditional variance
models literature, i.e., the GARCH(1,1) with normal conditional
distribution, is adequate to describe returns of conditional
heteroskedasticity, but it shows major limits when representing the high
kurtosis of unconditional distributions of return (Geweke [1994],
Shephard [1996], Starica and Pictet [1997], Kim et al. [1998]). Bai et al.
(2001) show that yt’s unconditional kurtosis can be broken down into
two components: kurtosis induced by the persistence parameters α1 + β1,
and kurtosis generated by the distribution of noise ξt, the two
components acting in a symmetric and interactive way to determine
overall kurtosis. In particular, the authors prove that, for the
GARCH(1,1) with ξt ~ N(0, 1), no contribution to the unconditional
kurtosis arises from the innovation distribution, but that for the values
of α1 + β1 more frequently found in empirical applications, that is 0.85
< α1 + β1 < 1, the induced kurtosis is too small to replicate the high
unconditional kurtosis. Thus Bollerslev (1987), Nelson (1991),
Shephard (1996), Terasvirta (1996), Mikosch and Starica (2000), among
others, suggest the use of GARCH processes with fat-tailed errors, like
t student or GED. In the SV case, the kurtosis coefficient of the
unconditional returns has the following expression (Taylor [1986],
Taylor [1994], Liesenfeld and Jung [2000], Bai et al. [2001])

(23)( ) 24 .h
tE eσκ ε=

Equation (23) shows that the unconditional distribution kurtosis of yt is
the result of two separate components which, as in the GARCH case,
operate symmetrically and interactively: conditional kurtosis, depending
on the innovation ξt distribution, and kurtosis induced by the volatility

unconditional variance,σh
2 =ση2/(1–φ2), which in turn depends on the

persistence parameter φ. Nevertheless, unlike the GARCH models, if ξt

~ N(0, 1), conditional kurtosis is equal to 3, and thus, since
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, in (23). As a consequence, the SV model can be defined
2

0, 0heσ κ> >
with normal conditional distribution as a thick-tailed model. However,
Liesenfeld and Jung (2000) show that for the persistence values most

likely in empirical applications, i.e., with  φ > 0.9, the normal SV model

does not fit well enough to capture the entire unconditional kurtosis, this
being consistent with results obtained by Geweke (1994), Terasvirta
(1996), Gallant et al. (1997), among others. So, for the SV as well, it is
necessary to adopt heavy-tailed conditional distributions. Moreover, in
the GARCH models, the fourth moment may not exist, in which case it
is not possible to calculate unconditional kurtosis. On the contrary, in
the SV models, the fourth moment exists whenever ht is a stationary
process: thus it is always possible to calculate kurtosis. 
 
Conditional Variance Asymmetry

For the EGARCH formulation He et al. (1999) show that, under specific
assumptions of the expected values of certain functions of returns
innovation, even when gt ~ N(0, 1), unconditional kurtosis is κ  > 3 and
depends on parameter values. Although EGARCH returns are more
fat-tailed than GARCH ones, the normal distribution can not describe
the entire unconditional kurtosis. As for the standard SV formulation,
equation (23) is still valid in the asymmetric case.  

Estimation Algorithms

The method usually utilized for estimating the conditional variance
models is the QML technique. More precisely, for the GARCH model
class it easy to maximize the likelihood function via iterative numerical
algorithms. Instead, in the SV model class it is not possible to
analytically solve the likelihood function which is T-dimensional
integrated. For this, as already seen in section II.C, it is necessary to use
a more complex procedure based on the Kalman Filter (Harvey and
Shephard [1996]).  

III.  Empirical Application

A. Dataset

To implement empirical comparisons a series of four indices are
considered: (1) Deutsche Aktienindex (DAX): 2119 observations, from
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TABLE 1. Main Descriptive Statistics

Mean×103 St. dev.×103 Skewness Kurtosis JB LB(30)

DAX 0.654 12.962 –0.430 5.677 703 1071
Dow Jones 0.565 9.832 –0.460 8.058 2359 552
FTSE100 0.333 9.713 –0.160 4.389 187 1537
MIB30 0.627 14.986 –0.073 4.415 179 935

TABLE 2. LM Test Statistics and Their Critical Values

Lag DAX Dow Jones FTSE100 MIB30 χ2

1 139.37 91.374 58.815 100.705 3.841
5 221.207 164.874 219.74 225.011 11.071

30 293.7 228.431 333.178 304.026 43.773
50 322.599 251.802 359.503 325.319 67.505

Note: For the details on LM tests, see Engle (1982). The χ2 critical values at at the 5%

04/01/1993 to 01/06/2001; (2) Dow Jones (DJ): 2123 observations,
from 04/01/1993 to 01/06/2001; (3) Financial Times Stock Exchange
(FTSE100): 2124 observations, from 04/01/1993 to 01/06/2001; (4)
Milano Indice Borsa (MIB30): 2124 observations, from 04/01/1993 to
01/06/2001.  

The choice of these indices is due to the fact that they represent the
different stock exchange markets. The returns   from the index series
collected each trading day at closing time are used. The   values are the
continuously compounded returns calculated as the natural logarithm of
two consecutive index values, rt = ln(Pt/Pt–1), a transformation used to
obtain approximately stationary series. Returns are then filtered through
suitable ARMA processes to eliminate or reduce any data linear
structure. Residuals (or adjusted returns) obtained are approximately
distributed as white noise.  

Table 1 presents several descriptive statistics of the data. The
kurtosis values indicate that the sample distributions of the adjusted
returns have heavy tails, especially for Down Jones. In addition, the
Jarque-Bera (1987) tests clearly show non-normality of distribution of
the four indices. The Ljung-Box (1978) tests (LB test) show strong
autocorrelations in the squared returns distributions. The Engle (1982)
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TABLE 3. Asymmetry Tests

Global Positive Negative Absolute
standard standard standard percentage Number Number
deviation deviation deviation difference of positive of negative
      σ       σ+       σ–       Δ%      m       n

DAX 0.013 0.0118 0.0142 20.34 1160 957
Dow Jones 0.0098 0.0091 0.0106 16.48 1141 978
FTSE100 0.0097 0.0093 0.0102 9.68 1109 1011
MIB30 0.015 0.0148 0.0153 3.38 1080 1035

Note: For the details on the tests see Drobetz and Zimmermann (2003).

LM test in table 2 indicates the presence of ARCH effects in the
conditional variance at 1, 5, 30 and 50 lags.  

Table 3 shows the results of the procedure suggested by Drobetz e
Zimmermann (2003) for detecting the presence of asymmetry in
financial returns series and performed before fitting any model to the
data. In short, the technique requires the splitting of each dataset into
two separate subsets, the positive returns subset (rt

+ ) and the negative
returns subset (rt

–). Applying the following equations, the standard
deviation for each subset minus the whole dataset mean value is
calculated: 
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where m and n represent the number of observations for each subset.
The quantity Δ% indicates the absolute percentage difference between
σ+ and σ–.

If the positive subset standard deviation is smaller (bigger) than the
negative (positive) subset, asymmetry is likely to be present in the
adjusted returns datasets, i.e. bad news and good news with the same
absolute value have a different impact on future volatility (Bali [2000],
Engle and Ng [1993]). It is possible to briefly conclude that the four 
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TABLE 4. GARCH(1,1) Estimates

Estimates DAX Dow Jones FTSE100 MIB30

α0 2.72×10–4 8.16×10–7 4.51×10–7 1.32×10–5

(4.96×10–5) (2.05×10–7) (1.71×10–7) (3.01×10–6)
[5.48] [4.20] [2.64] [4.38]

α1 0.089 0.083 0.045 0.117
(0.010) (0.007) (0.007) (0.017)
[8.55] [12.07] [6.61] [7.08]

β1 0.895 0.912 0.951 0.824
(0.011) (0.007) (0.007) (0.025)

[77.9] [118.3] [134.7] [32.7]

Note: Parentheses include the standard errors and brackets the t-values of the estimates.

TABLE 5. GARCH(1,1)-t Estimates

Estimates DAX Dow Jones FTSE100 MIB30

α0 1.29×10–4 5.10×10–7 3.61×10–7 1.04×10–5

(5.34×10–5) (2.04×10–7) (1.90×10–7) (2.94×10–6)
[2.41] [2.50] [1.90] [3.54]

α1 0.062 0.046 0.042 0.098
(0.010) (0.008) (0.008) (0.028)
[5.99] [5.85] [5.60] [5.72]

β1 0.915 0.929 0.948 0.833
(0.013) (0.011) (0.009) (0.028)

[68.3] [84.96] [103.2] [29.3]

Note: Parentheses include the standard errors and brackets the t-values of the estimates.

data sets analyzed show the stylized facts typical of financial returns
series: heavy tails, persistence, heteroskedasticity, strong sample
autocorrelations in the squared returns distribution, and asymmetry.  

B. Estimation of GARCH Models

Now the results of the empirical applications of the models described in
section I are shown to represent the qualitative features of the financial
returns datasets. In particular, three different formulations of the
GARCH family are fitted: the standard GARCH(1,1) with normal
conditional distribution, the GARCH(1,1)-t  with t student conditional
distribution, also known as the fat-tailed GARCH, and the 
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TABLE 6. EGARCH(1,1) Estimates

Estimates DAX Dow Jones FTSE100 MIB30

α0 –0.309 –0.524 –0.247 –1.053
(0.035) (0.054) (0.040) (0.172)

[–8.94] [–9.66] [–6.13] [–6.11]
α1 0.206 0.195 0.115 0.260

(0.022) (0.020) (0.018) (0.030)
[9.44] [9.62] [6.22] [8.63]

γ –0.271 –0.499 –0.529 –0.172
(0.052) (0.088) (0.112) (0.053)

[–5.19] [–5.66] [4.71] [–3.28]
β1 0.965 0.960 0.983 0.900

(0.005) (0.005) (0.003) (0.019)
[179.1] [195.3] [292.5] [48.1]

Note: Parentheses include the standard errors and brackets the t-values of the estimates.

EGARCH(1,1), with normal conditional distribution. The autoregressive
and moving averages of  GARCH components have been chosen by
AIC, Akaike Information Criterion (Akaike [1974]).  

Tables 4, 5 and 6 report the estimates and their standard deviations
of GARCH(1,1), GARCH(1,1)-t and EGARCH(1,1) models. In general
the parameter estimates are significantly different from zero except for
the parameter α0 of the FTSE100 return series in the GARCH-t
estimation.

Considering GARCH(1,1) and GARCH(1,1)-t, the sum α1 + β1

which represents volatility persistence, takes on high values (from 0.931
to 0.996).

Regarding EGARCH(1,1) estimation, the parameter of asymmetry,
γ, is negative in all series. This means that the impact of negative returns
on expected volatility is greater than that of positive ones. In particular
this impact is more significant for the Dow Jones and FTSE100 series.
In order to assess and compare the goodness of fit for each GARCH
type formulation fitted to the data, standardized returns are determined
by volatility estimates yt/σt (it is the so called “devolatilization“
procedure), and then standardized returns are tested to establish whether
they are gaussian white noise or IID (see, Lundbergh and Terasvirta
[2001] for a recent and thorough survey about GARCH diagnostic
tests). 

The Log-Likelihood values are displayed in table 7. Compared to 
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TABLE 7. Log-Likelihood Ratio Statistics

GARCH(1,1) GARCH(1,1)-t EGARCH(1,1)

DAX –32,619.9 –32,584.4 –32,609.6
Dow Jones –27,157.7 –27,104.6 –27,143.3
FTSE100 –27,170.3 –27,161.3 –27,170.6
MIB30 –28,227.0 –28,212.1 –28,231.5

TABLE 8. Kurtosis Values for Adjusted Returns and Standardized Residuals

yt GARCH(1,1) GARCH(1,1)-t EGARCH(1,1)

DAX 5.667 4.118 3.065 4.064
Dow Jones 8.058 4.707 3.018 4.466
FTSE100 4.389 3.514 3.011 3.651
MIB30 4.415 3.578 3.003 3.653

the standard GARCH(1,1) model, Log-likelihood values point out that
fat-tailed GARCH(1,1)-t better estimate the returns of all four indexes.
The EGARCH(1,1) model appears better than the standard version only
for the DAX and Dow Jones return series, while for FTSE100 it shows
exactly the same fitting, the worst performance being for the MIB30
returns. In particular, it is evident that as long as the asymmetric effect
(see table 7) weakens, the EGARCH performs as well as the standard
one, and sometimes worse. Finally, it should be noted that between
GARCH(1,1)-t and EGARCH(1,1) the former always performs better.
However, it is useful to remember that the formulation for the EGARCH
model is different from that of GARCH and GARCH-t: the EGARCH
models absolute shocks while the others model squared shocks. As a
consequence comparison among the different likelihood function values
is not very reliable. For this reason, in this paper work, alternative
diagnostic tools such as the kurtosis values, the LB test for whiteness of
residuals and the asymmetry test are utilized.  

Table 8 shows kurtosis values for standardized filtered returns.
GARCH(1,1)-t standardized returns have been “normalized“ through the
procedure suggested by Shephard (1996) and Kim et al. (1998) to
compare models. Kurtosis estimates allow us to evaluate model
adequacy to capture thick-tail unconditional distributions. For a perfect
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TABLE 9. LB Statistics for Standardized Residuals and Their Squared Values

GARCH(1,1) GARCH(1,1)-t EGARCH(1,1)

LB(30)
DAX 43.589 43.392 44.338
Dow Jones 38.437 37.652 44.317
FTSE100 27.078 27.518 26.981
MIB30 35.522 35.440 35.132
LB2(30)
DAX 25.584 28.835 41.420
Dow Jones 15.038 20.814 22.033
FTSE100 20.637 20.403 22.563
MIB30 27.635 27.923 36.180

Note: LB is for statistics on standardized residuals and LB2is for their squared values. The
critical value for the above LB statistics is χ2(28)= 41.337.

fit, kurtosis should be equal to three (the gaussian distribution kurtosis).
As before, GARCH(1,1)-t guarantees the best fit, capturing the whole
unconditional kurtosis. EGARCH, as already explained in section II.B,
performs better than the standard model, whenever asymmetry is strong,
i.e., for DAX and Dow Jones, while no remarkable improvement when
asymmetry is low.  

The Ljung Box test for autocorrelations in simple standardized
returns (see table 9), shows the presence of a residual linear structure
not captured by any model for DAX returns. Concerning the other
datasets, standardized residuals are distributed as white noise, except for
the EGARCH model applied to Dow Jones returns. As for the squared
standardized residuals, the LB test does not indicate any significant
autocorrelations, but for the EGARCH model applied to DAX returns.
In short, the GARCH standard and the GARCH-t models guarantee a
suitable goodness of fit, producing approximately IID standardized
residuals, while the EGARCH model reveals some limits in fitting the
data.  

The Engle and Ng (1993) diagnostic tests are applied in order to
check whether the EGARCH specification is adequate to describe
returns asymmetry: the sign bias test (SBT) is a t-test which allows to

verify the null hypothesis that  are independent from  2 2ˆt ty σ ˆt ty σ
signs; the negative size bias test (NSBT) and the positive size bias test

(PSBT) are the t-tests of the null hypothesis that   are 2 2ˆt ty σ
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TABLE 10. EGARCH(1,1) Model Asymmetry Tests

SBT NSBT PSBT

DAX 0.107 0.651 –1.548
Dow Jones 0.357 –0.429 –1.765
FTSE100 0.630 0.975 –0.379
MIB30 0.664 0.835 –0.112

Note: See Engle and Ng (1993) for the details regarding these tests. 

independent from negative and positive  shocks. As it is apparentˆt ty σ
in table 10, the EGARCH standardized residuals do not present any
remaining asymmetry, showing that Nelson (1991) model is able to
capture the leverage effect. Finally it can be deduced that the GARCH-t
model fits returns better than the standard GARCH, describing jointly
the tail thickness of the unconditional distributions and the squared
returns autocorrelations, while the EGARCH describes asymmetry but
not unconditional kurtosis completely. Thus a fat-tailed EGARCH
model is strongly recommended for the analyzed datasets.  

C. Estimation of SV models

In this subsection, the standard SV with normal conditional distribution
(SV), the SV-t  with t student conditional distribution (SV-t) and the
asymmetric SV model (ASV) with normal conditional distribution are
fitted. All models are estimated using the QML approach via the
Kalman Filter suggested by Harvey et al. (1994) and Harvey and
Shephard (1996).  

Tables 11, 12 and 13 show the estimates and their standard
deviations of the SV, SV-t and ASV models. It is important to note that

estimates of the persistence parameter φ are very high in all series, even

if significantly different from one (this means that volatility cannot be

considered a random walk process). In particular, estimates of φ
obtained from the application of SV and SV-t are very similar and are
higher than the estimates obtained from ASV. This is mainly due to the
greater number of parameters in the ASV model.  

Referring to the asymmetric effect, the results obtained for the ASV
model are very similar to those obtained for the EGARCH model. The
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TABLE 11. SV Model Estimates

φ ση α

DAX 0.989 0.115 –0.013
(0.003) (0.017) (0.000)

Dow Jones 0.9942 0.0823 –0.0569
(0.0025) (0.0158) (0.000)

FTSE100 0.9930 0.0818 –0.0661
(0.0025) (0.0131) (0.000)

MIB30 0.971 0.153 –0.037
(0.006) (0.021) (0.000)

Note: Parentheses include the standard errors of the estimates. 

TABLE 12. SV-t Model Estimates

φ ση α ν k ~ t

DAX 0.990 0.112 –0.093 37.58 3.881
(0.003) (0.017) (0.033)

Dow Jones 0.995 0.078 –0.051 15.43 4.887
(0.002) (0.016) (0.026)

FTSE100 0.993 0.076 –0.007 18.88 3.294
(0.003) (0.014) (0.030)

MIB30 0.973 0.146 –0.235 13.60 3.771
(0.006) (0.022) (0.064)

Note: Parentheses include the standard errors of the estimates.

parameter ρ, which represents the correlation between gt and ηt and
hence the asymmetric effect, is negative in all series. Moreover, in its
absolute value this coefficient is higher for Dow Jones and FTSE100.
Table 13 reports kurtosis values for standardized returns after estimating
the three models. SV-t standardized returns have been transformed as
in the GARCH-t case. Consistent with the theoretical analysis outlined
in section II, the standard model guarantees the best unconditional
kurtosis fitting, so it is not necessary to resort to fat-tailed conditional
distribution to replicate returns leptokurtic distribution. The SV
asymmetric is the worst performer among the three models in describing
outliers.  

The Coefficient of Variation (CV) value, calculated as 
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TABLE 13. Kurtosis Values for Adjusted Returns, SV, SV-t, and ASV Models

yt SV-N SV-t ASV

DAX 5.667 3.325 3.419 3.689
Dow Jones 8.058 2.872 3.840 4.449
FTSE100 4.389 3.078 3.048 3.363
MIB30 4.415 2.992 2.800 3.724

TABLE 14. Coefficient of Variations for SV, SV-t and ASV Models

SV-N SV-t ASV-N

DAX 0.266 0.878 1.117
Dow Jones 1.013 0.840 0.925
FTSE100 0.164 0.513 0.646
MIB30 0.183 0.492 0.561

exp(ση2/(1–φ2)) is a measure of the relative strength of the level of

conditional heteroskedasticity of returns series (Jacquier et al. [1994],
Sandmann and Koopman [1998]). In particular, CV values around 1
indicate pronounced relative strength of the stochastic volatility process
while values near to 0 signify that the model is close to constant
volatility. Except in the case of the Dow Jones estimate, the standard SV
coefficient of variation (see table 14) is too low to describe the
heteroskedasticity shown by empirical returns. On the other hand, SV-
and SV asymmetric models present CV values which are more
consistent with the strong heteroskedasticity of the data.  

The LB test for autocorrelations in standardized prewhitened returns
displays significant values for DAX returns, regardless of the model
applied. This result is probably due to the presence of a residual linear
autocorrelation in the standardized series. As for other datasets, the LB
test does not reject the white noise hypothesis for the standardized
residuals. Besides, the LB test shows the standard SV model failure in
representing the second moment structure of returns, while SV-t and SV
asymmetric specifications do not reject the IID hypothesis. For the
MIB30 dataset none of the models can describe the strong squared
returns autocorrelation (see table 15).

Finally, in table 16 results of the Engle and Ng (1993) diagnostics
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TABLE 15.  LB Statistics for Standardized Residuals and Their Squared Values

SV-N SV-t ASV-N

LB(30)
DAX 44.218 43.360 44.464
Dow Jones 39.317 37.358 38.463
FTSE100 25.288 23.484 24.300
MIB30 33.059 25.724 25.668
LB2(30)
DAX 58.759 24.422 29.534
Dow Jones 24.050 35.924 19.595
FTSE100 26.590 28.444 30.368
MIB30 69.928 76.036 63.999

Note: LB is for statistics on standardized residuals and LB2is for their squared values. The
critical value for the above LB statistics is χ2(28)= 41.337.

TABLE 16. ASV-N Model Asymmetry Tests

SBT NSBT PSBT

DAX –0.601 0.628 –2.731
Dow Jones –1.172 –2.919 –2.694
FTSE100 –0.159 0.459 –1.161
MIB30 0.319 –1.932 1.897

Note: See Engle and Ng (1993) for the details regarding these tests.

tests are presented for the SV asymmetric model. Although first
proposed and applied to GARCH asymmetric models, the three tests can
also be applied to volatility models which are not members of the
GARCH family (Engle and Ng [1993]). Results show a good
performance for the asymmetric model in catching the FTSE100 and
MIB30 returns asymmetry,  and partial and total inadequacy in
capturing the same, strongly present effect for DAX and Dow Jones
returns. To summarize, diagnostic tests show that the standard version
of the SV model is adequate to explain unconditional kurtosis of the
datasets analyzed. For more leptocurtic returns distributions, as it is
often encountered in literature (see, e.g., Taylor (1986), Bollerslev et al.
(1994), Harvey et al. (1994), Shephard (1996), Drobetz and
Zimmermann (2003), Engle and Patton (2001) and Peters (2001) among
others), probably a SV-t  or more fat-tailed model would be a better
choice. On the other hand, the standard SV model cannot adequately 



Multinational Finance Journal200

TABLE 17. Kurtosis Values for Standardized Residuals of All Models

Model DAX Dow Jones FTSE100 MIB30

GARCH(1,1) 4.118 4.707 3.514 3.578
SV-N 3.325 2.872 3.078 2.992
GARCH(1,1)-t 3.065 3.018 3.011 3.003
SV-t 3.419 3.840 3.048 2.800
EGARCH(1,1) 4.064 4.466 3.651 3.653
ASV-N 3.689 4.449 3.363 3.724

describe conditional heteroskedasticy and squared returns
autocorrelations, while the SV-t, although it performs slightly worse
than the standard formulation in explaining the unconditional kurtosis,
does not reveal any shortcoming in describing heteroskedasticity and
second moment autocorrelations. The only exception is the MIB30
index which squared returns autocorrelations could not be described by
any model. Finally, the asymmetric model has difficulty in capturing
unconditional kurtosis, especially the asymmetric effect when it is
strong (as in the DAX and MIB30 case).  

D.  Comparing performances

First of all, the models’ adequacy to describe the typical thick-tails
feature are compared. In particular, the kurtosis values of the
standardized returns yt/σt through the volatilities estimated by the
application of each model are considered. The standardized returns
should be approximately distributed as Gaussian white noises. The more
the estimated kurtosis approaches the Gaussian kurtosis value of 3, the
more the model can be considered adequate to capture the excessive
number of outliers typical of unconditional distributions returns.
Comparing the two standard formulations, the SV model shows values
of kurtosis closer to the Gaussian kurtosis value of 3 than the GARCH
one, indicating a better goodness of fit in representing fat tails (table
17).  

These results confirm those obtained by other authors, such as
Geweke (1995), Shephard (1996), Kim et al. (1998), who compared
goodness of fit between GARCH and SV models using different
methods. Asymmetric SV is slightly better than EGARCH in describing
fat tails, even though it is not as good as the standard model. Finally, it
is important to note that GARCH-t  model is not only better able to 
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TABLE 18. Mean Absolute Deviations Between Induced ACFs and Squared
Returns ACFs

Model DAX Dow Jones FTSE100 MIB30

GARCH(1,1) 0.172 0.285 0.287 0.102
SV-N 0.036 0.058 0.080 0.044
GARCH(1,1)-t 0.154 0.142 0.217 0.148
SV-t 0.042 0.093 0.026 0.060
EGARCH(1,1) 0.079 0.099 0.089 0.070
ASV-N 0.011 0.005 0.018 0.008

capture empirical leptocurtosis (fat-tails) than the SV-t  model, but is
also the best in relation to the other models.

In order to compare the fit of the models in describing
autocorrelations shown by squared returns, the autocorrelation function
(ACF) and induced ACF are calculated by applying the theoretical
equations provided in literature (Bollerslev [1986], Taylor [1994], He
et al. [1999]), using parameter estimates and on the basis of a minimum
distance criterion (mean absolute deviations), the best-fitting model is
established.  

Results reported in table 18 show that SV models dominate GARCH
in describing squared empirical ACFs. Likewise, among the different
specifications considered here, asymmetric models guarantee, for each
class of models, the best goodness of fit regarding the specific returns
feature analyzed. Besides, heavy tailed distributions perform better than
standard formulations, and overall it is important to highlight that the
best GARCH-type model (EGARCH) under-performs even the worst
SV model (SV–t). Furthermore, see figure 1 of the ACFs built from the
parameters estimates of EGARCH (short dash line) and asymmetric SV
(long dash line) compared with sample squared returns autocorrelations
(dots) for the four indexes analyzed.  

Tables 10 and 16 provide results of Engle and Ng (1993) tests
applied to standardized residuals from EGARCH and SV asymmetric
models. As shown by the reported values, EGARCH captures the
leverage effect better than the SV asymmetric model. Indeed, while for
FTSE100 and MIB30 indexes both models ensure the same fitting, for
the DAX and Dow Jones indexes, i.e., the two more asymmetric
datasets, tests show large values for the SV model, while for EGARCH
no significant values are presented.  
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Figure 1.—ACFs Based on EGARCH (dashed line) and Asymmetric SV
Model (line) vs. the Empirical Squared Autocorrelations (dots). 

IV.  Conclusion

On the basis of the results which emerge while using four different data
sets of financial returns, it is possible to conclude that the Stochastic
Volatility model, in its standard formulation, provides a better goodness
of fit than the standard GARCH one. In particular, the normal SV
dominates the normal GARCH both in describing heavy tailed
unconditional returns and in representing the strong and slow decaying
squared returns sample autocorrelations.  As regards other more
complex formulations, the outcomes are not so clearly in favour of SV
models: GARCH-t formulation fits outliers better than SV-t, while it
proves not to be as effective as SV in explaining squared
autocorrelations.  

Finally, asymmetric models, i.e., EGARCH and SV asymmetric, are
not as good as the previous ones in describing fat tails, but are very
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suitable in approximating squared returns ACFs. Asymmetric SV is
superior in capturing heavy tails and autocorrelations, while EGARCH
is better in describing the asymmetric effect when this is particularly
strong.  

These results provide a preliminary analysis for the choice of the
best model to forecast the volatility of financial returns. In fact, when
the return distribution is characterized by fat-tails (or asymmetry) the
GARCH-t (or EGARCH) models are recommended. Otherwise, when
return distribution is normal, the SV model is more adequate.
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