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Several empirical studies have shown the inadequacy of the standard
Brownian motion (sBm) as a model of asset returns. To correct for this evidence
some authors have conjectured that asset returns may be independently and
identically Pareto-Lévy stable (PLs) distributed, whereas others have asserted
that asset returns may be identically - but not independently - fractional
Brownian motion (fBm) distributed with Hurst exponents, in both cases, that
differ from 0.5. In this article we empirically explore such non-standard
assumptions for both spot and (nearby) futures returns for five foreign
currencies: the British Pound, the Canadian Dollar, the German Mark, the Swiss
Franc, and the Japanese Yen. 
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I. Introduction

The standard hypothesis concerning the behavior of asset returns in
financial markets claims that they are independently and identically
lognormally distributed (ln[P(t + dt) – ln[P(t)] ~ N(µdt, 2dt)). The
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1. There is extensive literature on fractality from a mathematical point of view, such
as Mandelbrot and Van Ness (1968) and  Falconer (1990).  Applications of fractality in
finance are presented in Evertsz (1995a, 1995b), Evertsz and Berkner (1995), and Corazza,
Malliaris and Nardelli (1997).

2. See Mittnik and Rachev (1993) and Campbell, Lo and MacKinlay (1997).

3. Representative references include Lo (1991), Peters (1991, 1994), Corazza (1996),
Evertsz (1995a, 1995b), Evertsz and Berkner (1995), Belkacem, Levy Vehel, and Walter
(1996), Ostasiewicz (1996),  Campbell, Lo and MacKinlay (1997) and Corazza, Malliaris
and Nardelli (1997).

corresponding underlying stochastic process is characterized by a
quantity, called the Hurst exponent H, which is related to some fractal
aspects of the process itself.1  In particular, for a standard Brownian
motion (sBm) the Hurst exponent is H = 0.5.

Several empirical studies have supported the independent and
identical lognormal behavior of asset returns, but others have shown its
inadequacy as a model of asset returns. This inadequacy is often caused
by the existence of many outliers, nonstationarity in the variance level,
presence of asymmetry, and short and long-term dependence.  Authors
such as Lo and MacKinlay (1988), Lo (1991), Peters (1991, 1994),
Evertsz (1995a, 1995b), Evertsz and Berkner (1995), Corazza (1996),
Campbell, Lo and MacKinlay (1997) and Corazza, Malliaris and Nardelli
(1997) provide statistical evidence that asset prices do not follow random
walks. 

To account for this discrepancy, some authors have conjectured that
financial returns may be independently and identically Pareto-Lévy
stable (PLs) distributed, whereas others have conjectured that asset
returns may be identically, but not independently, fractional Brownian
motion (fBm) distributed.2, 3 Both of these conjectures are characterized
by exponents of Hurst such that H � 0.5.

In this article we consider such non-standard hypotheses about
returns for both spot and (nearby) futures for five foreign currency
markets: the British Pound, the Canadian Dollar, the German Mark, the
Swiss Franc and the Japanese Yen. We assume the Hurst exponent H
belongs to a suitable neighborhood of 0.5, that is, we (indirectly) assume
that the stochastic process generating exchange rate returns can be
either a PLs or a fBm motion. This assumption provides a more flexible
theoretical framework to examine if the so-called Fractal Market
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4. Notice that the peculiarities of such a matching depends on the stochastic process
generating the asset returns.

5. These concepts are discussed in detail in Pancham  (1994), Corazza (1996),
Belkacem, Vehel, and Walter (1996) and also in section 6 of this article. 

Hypothesis (FMH), as proposed in Peters (1991, 1994), is a reasonable
generalization of the standard Efficient Market Hypothesis (EMH),
initially elaborated in Fama (1970). Of course, when H = 0.5 the FMH
coincides with the EMH. Furthermore, we also assume that the Hurst
exponent is a function of time, H = H(t), allowing the foreign currency
markets structures to vary over time. The introduction of this dynamic
dimension permits the generalization of the FMH into the MultiFractal
Market Hypothesis (MFMH).

Briefly, the MFMH provides a theoretical framework to account for
changes from “regular” to “irregular” phases of the capital markets and
vice versa. In general, in such markets traders have investment horizons
with similar or different lengths. If the matching between the asset
demand and supply is relatively equal, then both the liquidity and
regularity of the markets are ensured, otherwise the opposite holds.4, 5

Of course, when H = 0.5, for all suitable t, then the MFMH coincides
with the EMH.

The remainder of the article is organized as follows: in section 2 we
give a brief review of the literature; in sections 3 and 4 we present some
theoretical and empirical aspects that are essential to our analysis;
section 5 describes the data and section 6 reports the results of the
multifractal analysis. In section 7 we offer an economic interpretation of
our results, and finally, in section 8, we summarize our concluding
remarks.

II.  Review of the Literature

Market efficiency has been the most celebrated theory of financial
markets during the past three decades. In its simplest formulation this
theory claims that changes in asset prices reflect fully and
instantaneously the release of all new relevant information. Furthermore,
because such a flow of information cannot be anticipated between the
current trading period and the next one, asset price changes, in efficient
markets, are serially independent. In other words, the release of



Multinational Finance Journal68

unanticipated information moves asset prices randomly. The textbook by
Campbell, Lo and MacKinlay (1997, section 8) explains various versions
of the random walk hypothesis.

The efficient market theory, from its earliest formulation by
Samuelson (1965) and Fama (1970), has been refined in several
directions. Analytically, the concept of information has been rigorously
defined. Statistically, the notion of random walk has been generalized
to Itô processes. Moreover, the efficient market hypothesis has been
extensively tested. Fama (1991) traces the evolution of the market
efficiency theory during its first two decades and skillfully cites
numerous studies that offer empirical support as well as empirical
rejection of the EMH.

In this article we conduct an empirical investigation of the return
behavior of five foreign currencies in order to detect possible
discrepancies between the actual behavior of such currencies and the
classical random walk. Note that we do not claim that foreign currency
markets are inefficient nor do we assert that the EMH does not hold.
We acknowledge that market efficiency is currently the central theory
of financial economics, at least until a new theory is proposed as a better
explanatory paradigm of asset prices behavior. We merely wish to
emphasize the need for revising the EMH and provide empirical
evidence to this end.

The existing literature proposes several approaches for verifying
whether a foreign exchange market is more or less efficient. In the
remainder of this section we briefly review some of most significant
findings.

From an econometric standpoint, Cornell (1977), Frankel (1980),
Chiang and Jiang (1995), and Zhou (1996) examine whether the current
spot, the forward rate or the futures price can be used as an unbiased
predictor of the spot rate itself at some future date. From the same point
of view, it is possible to use the recent time series tools of cointegration,
ARCH and GARCH techniques to detect possible market inefficiencies.
Kao and Ma (1992), Leachman and El Shazly (1992), Chan, Gup and
Pan (1992) and Alexakis and Apergis (1996) utilize such methodologies.

A more operative approach consists of devising certain trading rules
concerning these markets and determining their profitability, as in Taylor
(1992), Levich and Thomas (1993), and Kho (1992).
A third class of techniques looks for deterministic nonlinear and chaotic
dynamics in foreign currency market data. Hsieh (1988, 1992), and
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6. Notice that the interval (0.5, 1) is obtained as the intersection of the ones
characterizing each of the different PLs distribution sub-families. Taqqu (1986) includes in
these subfamilies, the symmetric, the fractional and the log-fractional one, among others.

Bleaney and Mizen (1996) follow these methodologies.
Finally, a recent “inter disciplinary” approach is the fractal one which

is linked to both stochastic and deterministic aspects of the underlying
process generating the price changes. The  tools of fractal analysis are
employed by Liu and Hsueh (1993), Fang, Lai and Lai (1994), Evertsz
(1995a, 1995b), Evertsz and Berkner (1995), Van de Gucht, Dekimpe
and Kwok (1996), Corazza, Malliaris and Nardelli (1997) and in this
article. A detailed presentation of these techniques is given in Shubik
(1997).

III.  Theoretical Aspects

The current literature proposes different stochastic processes to
describe the behavior of financial returns. The most common
approaches are the fractional Brownian motion (fBm), and some of the
Pareto-Levy stable (PLs) distribution sub-families. In general, these
stochastic processes can be characterized by the same Hurst exponent,
H � 0.5, as explained in Taqqu (1986), Evertsz (1995a, 1995b), and
Evertsz and Berkner (1995).  In fact, if such stochastic processes are
independently and identically distributed with exponentially decaying
power-law tails, as for example the PLs, then H � (0.5, 1), whereas if
they are identically, but not independently distributed, as for example the
fBm, then H � (0, 1).6

In order to conduct our analysis and consequently to test the
MultiFractal Market Hypothesis (MFMH), we need a set of
mathematical and statistical tools to formally define and estimate the
long-term dependence of asset returns and to determine the value of the
Hurst exponent. In particular, in this section we first define the fBm and
PLs motions and present some of their properties. Second, we describe
some tests for detecting long-term memory in time series and we
introduce some algorithms for estimating the Hurst exponent, H.

A. Fractional and MultiFractional Brownian Motion

The fBm is a term coined by Mandelbrot and Van Ness (1968) to
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7. For details, see Cheung and Lai (1993), Corazza (1996) and Belkacem, Levy and
Walter (1996).

8. If   � (0,1) the distribution does not have a finite mean or a finite variance. If  �
[1,2) the distribution has only a finite mean and if  = 2, the distribution has both finite
mean and finite variance.

describe an almost everywhere continuous Gaussian stochastic process
of index H � (0,1), {BH(t), t � 0}, defined by a Riemann-Liouville
stochastic integral, such that BH(0) = 0 with probability 1, and that BH(t2)
– BH(t1) ~ N(0, 2H(t2 – t1)

2H), with 0 � t1 < t2 < +� and  > 0. In
particular, if H � 0.5 then the increments are stationary but not
independent, and they show a long-term memory depending on both H
and t2 – t1. If H � (0, 0.5), there is a negative dependence between the
increments. In this case the stochastic process has an anti-persistent
behavior. If H � (0.5, 1), there is a positive dependence between the
increments and in this case the process has a persistent behavior. The
case H = 0.5 is the sBm that has independent increments. Moreover, this
stochastic process is statistically self-similar, that is {BH(t),  t � 0} and
{a–HBH(at), t � 0}, with a > 0, have the same distribution law. Further
details for the fBm can be found in Falconer (1990), Evertsz (1995a,
1995b), Evertsz and Berkner (1995) and Corazza, Malliaris and Nardelli
(1997).

In 1995, Peltier and Levy  (1995) proposed an extension of the fBm
by substituting the constant over time Hurst exponent, H, with a suitable
time dependent function, H(t). Unlike the fBm, this new stochastic
process, called multifBm (mfBm), allows us to formally model the
irregularities of the process trajectory. As such, this stochastic process
can be fruitfully utilized to describe non-stationarity in financial asset
price variations.7 

B.  Pareto-Lévy Stable Stochastic Process 

The PLs motion, originally introduced by Lévy (1925) as a generalization
of the sBm, is a stochastic process, {L (t), t � 0}, characterized by a
distribution, S , (µ, ), depending on four parameters: the so-called
characteristic exponent  �(0, 2], the skewness parameter  � [–1, 1],
the location parameter µ � (–�, +�), and the scale coefficient  � [0,
+�).8 This stochastic process is such that L (0) = 0 almost-surely, and
its increments L (t2) – L (t1), with 0 � t1 < t2 < +� , whose distribution
is S ,  (0, (t2 – t1)

1/ ), are independent and stationary. In particular, if 
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9. From a financial standpoint it is not restrictive to assume that  = 0.  In fact, most
of the skewness parameters estimated from asset returns time series, though different from
0, are quite close to it.

10. See Taqqu (1986) and Corazza, Malliaris and Nardelli (1997).

11. We are grateful to an anonymous referee for suggesting that we use both
methodologies.

� (0, 2) then the tails of such a process decay slower than the tails of an
fBm process, and if  = 2 it is possible to prove that {2–1/2 L2(t), t � 0}
� {B0.5(t), t � 0}, which is the sBm. Moreover, if the distribution S , (µ,
) is symmetric, that is if  = 0, then the corresponding PLs process is

statistically self-similar.9 Taking {L (t), t � 0}  and {a–1/ L (at), t � 0},
with a > 0, results in the same distribution law. In such a case it is
possible to prove that the Hurst exponent equals H = 1/ .10 

IV.  Empirical Aspects

Although a large empirical literature exists confirming the presence of
long-run memory or long-range dependence in asset prices, there are no
universally accepted quantitative methodologies that make it  possible to
detect such long-term dependence in (finite) time series as argued by
Taqqu, Teverovsky and Willinger (1995). Moreover, some of the
methodologies used show considerable limitations. Thus, in order to
overcome the shortcomings of each methodology, we follow two
different inferential approaches and compare the corresponding results.
The methodologies employed are the classical modified range over
standard deviation statistic, R/S, and the periodogram approach.11

A.  Tests for Long-Term Dependence

i. The Modified R/S Test

Lo (1991) proposes a modification of a test based on the classical range
over standard deviation statistic, R/S. To test for no long-term
dependence in financial time series consider:

(4.1)( ) ( )
,T T

r

R S q
Q q

T
=
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12. Notice that a rejection of such a null hypothesis does not necessarily imply that
long-range dependence is present but, merely, that the underlying stochastic process does
not simultaneously satisfy all the conditions stated by Lo (1991). However, such conditions
are satisfied by many of the recently proposed stochastic processes for long-term
dependence.

13. Notice that such an arbitrary way of choosing an AR(1) model and a MA(1) one
is not particularly restrictive because, in general, such models are standard for handling
short-term memory in financial returns time series.

where T is the time series size, q is the possible short-term dependence
(integer) length, RT(q) is the sample range of partial sums of deviations
of the time series from its sample mean, and ST(q) is the modified
standard deviation of the time series including the autocovariances
weighted up to lag q.  This new methodology is described in detail in
both Lo (1991) and Campbell, Lo and MacKinlay (1997).  Precisely, this
statistic is able to test the null hypothesis of no long-term dependence.12

In particular, unlike the corresponding statistic based on the classical
R/S, it is robust to short-term memory, conditional heteroscedasticity, and
non-normal innovation. Furthermore, it also has well-defined
distributional properties as described in Lo (1991) and Campbell, Lo and
MacKinlay (1997), although the related (asymptotic) distribution is
neither standard, nor easily tractable.

Of course, this statistic is crucially influenced by the statistical
structure of short-term dependence. In order to accommodate this
aspect, we apply two different approaches. In the first approach we
specify in a nonparametric way the short-term memory structure
determining the optimal value of q by the use of the Andrews’ (1991)
data-dependent rule q* = [(3T/2)1/3[ /(1 – 2)]2/3], where the operator

 denotes the greatest integer less than or equal to the argument, and[ ]⋅
 is the sample first-order autocorrelation coefficient. In the second

approach, we take into account the remarks of Lo (1991) and Jacobsen
(1996) stating that, in general, there is little guidance in determining the
optimal value of q. In this article, we follow the Jacobsen’s (1996)
procedure, and perform the test in two steps. First, we impose some
specific models for the short-term dependence structure, namely an
AR(1) one and a MA(1) one.13 Second, we apply the statistic QT(q

*),
with q* = 0, to the time series of the corresponding residuals.

Finally, by using the fractiles of the distribution of QT(q) as in Lo
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(1991), it is possible to determine critical values for different significance
levels in this two-sided test. At 10, 5 and 1 percent they are 1.747, 1.862,
and 2.098, respectively.

ii.  The Periodogram-based Test

Lobato and Savin (1998) employ a suitable approximation to the
Lagrange multiplier test in order to develop the no long-term dependence
in the following time series statistic that is based on a periodogram and
is given as such: 

(4.2)( )
( )

( )
1

1

,

m

j j
j

T m

j
j

v I

LM m m
I

λ

λ

=

=

 
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 =
 
   

∑

∑

where m is an (integer) bandwidth, 

( ) ( )
1

ln ln ,
m

j
j

v j j m
=

 
= −  

 
∑

and 

( ) ( ) ( )
1

exp 2 ,
T

j t j
t

I x it Tλ λ π
=

 
=  

 
∑

is the periodogram computed at frequency j = (2 j)/T, in which xt, with

t = 1,..., T, is the time series, and i =  . More specifically, this1−
statistic tests the null hypothesis H0: H = 0.5 rather than the alternative
one HA: H � 0.5. Moreover, this test is characterized by a well-known
and quite tractable (asymptotic) distribution which is the 2

1.
Of course, in this statistic, the bandwidth m plays a crucial role. In

order to determine its optimal value, we need to verify that certain
proper assumptions hold (such as the Gaussianity of xt, with t = 1, ..., T).
We use the iterative algorithm presented in Delgado and Robinson
(1996) to estimate m. We could also apply the widely used “rule of
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14. See Pancham (1994),  Peltier and Levy (1994) and Taqqu, Teverovsky and
Willinger (1995) for a different methodology.

thumb” that sets m = .T
Finally, by using the fractiles of the 2

1 distribution, it is possible to
determine the critical values for different significance levels for this two-
sided test.

B. Procedure for Estimating the Hurst Exponent

i. The Modified R/S Estimation Procedure

The Hurst exponent is linked to the modified R/S statistic by limt�+�

E[RT/ST(q)]/(aTH) = 1, with a > 0. With this link it is possible to obtain
the following approximate relationship: ln{E[RT/ST(q)]} � ln(a) + Hln(t).
In order to estimate the value of the Hurst exponent, H, we have
modified and improved the standard techniques described in Peters
(1991, 1994), Corazza (1996) and Corazza, Malliaris and Nardelli (1997).
 To do so, we first determine a series of estimates of the Hurst
exponent {Hj, j = 1, ...,T* < T} by fitting an ordinary least square
regression between {ln[RT,l /ST,l (q)]}, l = 1, ..., j} and {ln(l), l = 1, ..., j},
for every j = 2, ..., T*, where RT, l and ST,l (q) are quantities related to RT

and ST(q) respectively. Then, we choose the optimal estimate in this
series.  Figures 1A and 1B illustrate the corresponding results for some
of the analyzed time series by plotting Hj versus j, with j = 2,..., T*. In
particular, this estimation procedure is robust, although possibly subject
to bias, when the data generating process follows a highly non-normal
distribution as argued by Lo (1991), Cheung and Lai (1993), Robinson
(1994b), and Campbell, Lo and MacKinlay (1997). It is possible to prove
its almost-sure convergence for stochastic processes with infinite
variance. Consider for example the PLs distribution with  � (0,2).
Furthermore, Robinson (1994b) argues that the R/S estimation procedure
is suboptimal when the data generating process follows a Gaussian
distribution because such a procedure does not depend on second
moments.

Overall, the R/S-based estimation procedure described in this section
offers the possibility to estimate the Hurst exponent without complete
information, and without strong a priori assumptions on the distributional
properties of the considered stochastic process.14
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FIGURE 1A—H versus j for Canadian Dollar S. (08/76-01/82): The
AR(1)case (T*=690).

FIGURE 1B—H versus j for British Pound F. (06/72-07/76): The q = #
case (T*=520)

ii. The Periodogram-based Estimation Procedure

From a spectral density point of view, the Hurst exponent is linked to the
discretely averaged periodogram:
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15. See Robinson (1994a).

16. See Lobato and Robinson (1996).

( ) ( )
2

1

2 .
T

j
j

F I T
λ π

λ π λ
  

=

 
=  

  
∑

Starting from this relationship, Robinson (1994a) proposed the following
closed form semi-parametric estimator for H:

(4.3)( ) ( )
( )
( )

1
, 1 ln ,

2ln
m

m

F r
H m r

r F

λ
λ

 
= −  

  

where m is the bandwidth introduced earlier and r � (0,1) is a suitable
user-chosen variable. In particular, under the hypothesis that the data-
generating process follows a Gaussian distribution, it is possible to prove
that this estimator is consistent and that it has well-defined (asymptotic)
distributional properties both normal and non-normal, depending on the
estimated value of H(m, r).15, 16

Of course r, plays a crucial role in this estimator. In particular, if
some proper assumptions hold, among them the restrictions that H �
(0.5, 0.75), then it is possible to determine its optimal value as discussed
in Lobato and Robinson (1996). Thus, since both m and r depend on
H(m, r), in order to optimally estimate the Hurst exponent, we must
determine a suitable series of converging estimates of H, {Hj(mj, rj), j
= 1, ..., J}. This can be done using the iterative algorithm proposed in
Delgado and Robinson (1996). Figure 1C illustrates the corresponding
results for one of the analyzed time series by plotting Hj(mj, rj) versus
j, with j = 1, ..., J.

V.  Data Set and Descriptive Statistics

The data we analyze are the time series of the daily returns using closing
prices of exchange rates expressed in US Dollars, that is, 100{ln[P(t
+1)] – ln[P(t)]}. We use data from June 1972 to September 1994, for
the following five spot and (nearby) futures foreign currency markets:
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FIGURE 1C—H versus j for German Mark F. (06/72-07/76): The
Periodogram case (J=7)

British Pound, Canadian Dollar, German Mark, Swiss Franc and
Japanese Yen. In particular, in order to implement our multifractal
analysis, we assume that the dynamic Hurst exponent H(t)is a stepwise
constant function whose intervals are determined by splitting up each
time series into four non-overlapping sub-periods: June 1972 to July
1976; August 1976 to January 1982; February 1982 to June 1987; and
July 1987 to September 1994. The choice of these four time sub-periods
is driven by the (relative) homogeneity of the economic and political
conditions in each geographical region.

In table 1A to table 1F, we report some standard descriptive
statistics. The quantities reported indicate the number of observations,
the minimum and maximum values of the time series, the means, the
medians, the standard deviations, the skewness, and the kurtosis.

Generally, all the considered time series qualitatively denote to some
degree a departure from normality. This is evidenced by the medians
that differ from the corresponding means, skewness values, and
particularly, kurtosis values. These departures are also confirmed by the
performance of a simple 2-type test for distribution fitting, which rejects
the null hypothesis of normality for all the time series at 1% significance
level.

From a short and medium-term autocorrelation point of view, we
investigate the sample autocorrelation function up to lag 22 (about a one-
month trading period). In general, with the exception of certain time
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17. Such as the the Canadian Dollar spot, the Canadian Dollar futures, the German
Mark spot, the Japanese Yen spot, and the Swiss Franc futures in some sub and full-sample
periods.

18. For more details see Dickey and Fuller (1979, 1981).

19. The 2% significance level is the lowest boundary of the significance levels tabulated
in Dickey and Fuller (1979).

20. Statistical computations were performed by Marco Corazza.
21. Notice that, although for completeness of exposition we also report the cases when

the null hypothesis is rejected at the 20% significance level, practically we consider such
rejections as acceptances in table 2F.

series, such an autocorrelation structure is negligible. In table 1F, we
report the lag(s) for which the corresponding autocorrelation coefficient
is significantly different from 0 at the 5% significance level for each time
series under observation.17

Finally, some authors, such as Lobato and Savin (1998), suggest that
evidence of long-term memory could be spuriously caused by non-
stationarity in the time series itself.  To test for non-stationarity, we
perform the basic Dickey-Fuller test and its properly augmented
version.18 For all the considered series, both tests reject the null
hypothesis of non-stationarity (more precisely the tests reject the
presence of a unit root in the autoregressive representation) at the 2%
significance level.19

VI.  Empirical Results of MultiFractal Analysis20

The empirical results obtained are reported in table 2A to table 2E. In
particular, the results relative to each of the considered single time
periods are presented in four rows. The first three rows are devoted to
the modified R/S-based approach, and the fourth row is devoted to the
periodogram-based approach. In the columns labeled “*” we report the
information concerning the assumed short-term dependence structure (in
the first three rows relative to each period), and the bandwidth value (in
the fourth row relative to each period).  In the columns labeled “H0” we
report the results of the test for no long-term dependence (acceptance
or non-rejection is indicated by “A”, rejection is indicated by its
significance level), and in the columns labeled “H” we report the values
of the Hurst exponent.21
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22. There are instances when at least two of the three sub-cases of the modified R/S-
based approach (q = #, AR(1), and MA(1)) qualitatively agree with the only accept/reject
decision given by the periodogram-based approach.

23. For these processes jointly characterized by H � (0,0.5)  and long-term
independence, some authors, such as Evertsz (1995a, 1995b), suggest suitable mixtures of
fBms and PLs motions. Others, like Zou (1996) suggest that some proper PLs distribution
sub-families, such as a fractional distribution may be suitable. These issues have not been
settled and are beyond the scope of this work.

Generally, from the results reported in Table 2A to Table 2E, we
observe that for the 66% of the considered time periods, both the
modified R/S-based and the periodogram-based-tests qualitatively agree
to accept or reject the null hypothesis of no long-term memory.22

We also wish to note that, in general, the estimates of H based on the
modified R/S approach are greater than the corresponding estimates
based on the periodogram approach.  This is in accordance with the
findings of Mandelbrot and Wallis (1969) and Jacobsen (1996), which
confirm that the modified R/S-based estimation procedure overestimates
the value of H when the true value is lower than 0.72 (as it seems to be
in the majority of our cases).

Again, for all time periods and for both spot and (nearby) futures
foreign currency markets, the corresponding value of the dynamic Hurst
exponent H(t) is neither equal to 0.5 nor constant over time. This
provides us with important empirical evidence for the MFMH or, at
least, for the need to revise the EMH. In particular, the dynamic
dimension is well supported by the test for no long-term dependence
results. In fact, both the spot and (nearby) futures foreign currency
markets are characterized over time by different underlying stochastic
processes: the fBm, the PLs motion and an undetectable one.23

Almost all the fBms describing the stochastic behavior of a wide
percentage of the time sub-periods show a persistent long-term
dependence, that is H � (0.5, 1), and all the PLs motions describing the
stochastic behavior of another wide percentage of the time sub-periods
are distinguished by the non-finiteness of the variance, that is by  � (1,
2) (by  = 1/H). Coupling both these aspects, that is, long-term
dependence/independence and variance finiteness/non-finiteness, it
follows that the structure of financial risk can vary widely from one time
sub-period to the next.

In general, the spot and the (nearby) futures foreign currency
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24. Notice that a–H plays the role of  a proportionality factor.

markets for each currency are characterized by similar dynamic
stochastic structures, especially from a short and long-term
dependence/independence point of view. 

VII.  Economic Interpretations

In general, all the analyzed foreign currency markets exhibit a behavior
over time influenced by their Hurst exponent and by their long-term
independence/dependence. This behavior provides empirical support for
the MFMH as a reasonable extension of the EMH. In fact, different
stochastic processes describe the foreign currency markets during
various periods.  We distinguish three phases characterizing the
conjectured MFMH (instead of the two standard ones): a “regular”
phase, a new phase that we identify as “semi-regular” and an “irregular”
phase.

The “regular” phase is associated with the fBm via long-term
dependence, that is, with the Hurst exponent H � (0.5, 1). In fact, the
characteristics of the financial risk described by the corresponding
distributional law are such as to permit a relatively simple matching
between the demand and supply for two reasons:

First, the statistical self-similarity characterizing the fBms guarantees
that the risk associated with investments of different horizon lengths t
and at, with a > 0, are evaluated in the same proportion by their
corresponding investors. Actually, {BH(t), t � 0} and {a–HBH(at), t � 0},
with a > 0, have the same distributional law.24 Because of this, the
demands and supplies of these investors with different horizon lengths
match, and thus ensure a certain liquidity for the foreign currency
markets. Notice that the statistical self-similarity implicitly asserts the
existence of some relationships between the Hurst exponent, H, and the
liquidity level. 

Second, the long-term persistent memory distinguishing these foreign
currency markets makes it possible to partially forecast future returns,
and consequently, ex ceteris paribus, to manage a lower risk than in the
classical independently and identically log-normally distributed
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25. Notice that, because of the trend due to long-term dependence, the standard
deviation of the considered fBms provides an over-evaluation of the actual volatility of the
corresponding foreign currency markets.

26. Recall that the tails of the PLs motions with  � (0,2)  decay slower than the fBm
ones.

environment.25 This lowering of long-run risk may explain the
attractiveness of longer investment horizons by some investors in an fBm
regime.

In particular, in order to explain such long-term persistent memory,
we can conjecture that the analyzed foreign currency markets are
characterized by the regular arrival of new information confirming
underlying economic trends. Of course, this reduces the spread between
the ability of economic agents to make optimal decisions and the
complexity of decisions made under uncertainty.

The “semi-regular” phase is associated with the PLs motion, that is
distinguished both by the non-finiteness of the variance because of  �
(1, 2), and by the no long-term dependence. The characteristics of the
financial risk arising from the corresponding distributional law permit,
again, the matching between the demand and the supply, but to a lower
degree as compared to the “regular” phase. In fact, in the current case,
the only source of attractiveness for investors who value lengthy
horizons is the statistical self-similarity. In particular, notice that the
values of the Hurst exponents, characterizing the “regular” and the
“semi-regular” phases are within a limited range and, so, their impacts
on the liquidity levels are quite similar for both phases. At least, no
significant differences are apparent. To the contrary, the unpredictability
of future returns due to the absence of some long-term dependence puts
the “semi-regular” phase volatility in a higher risk class than does the
unpredictability of the “regular” phase (however, ex ceteris paribus,
both normal). Furthermore, the distributional properties of the underlying
stochastic process put this PLs volatility in a higher risk class than the
normal one.26 Of course, this latter financial risk characteristic causes
a lower participation of investors in the “semi-regular” foreign currency
market than in the “regular” foreign currency market and, in particular,
a lower participation of investors having long horizon lengths that are
associated with highest risk. Because of this, in the corresponding “semi-
regular” foreign currency market there are both a lower liquidity level,
and a lower average investment horizon length than in the “regular”
phase foreign currency one.
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27. A simple proof of this claim may be obtained from the authors.

In order to explain such a higher risk level distinguishing the “semi-
regular” phase, we can conjecture that the corresponding foreign
currency markets are characterized by an irregular arrival of exogenous
noise. Of course, this makes it difficult for investors to detect any trends
that may exist in the fundamentals of the economy and thus may
influence their ability to make rational decisions.

The “irregular” phase is associated with an undetectable stochastic
process, that may be a suitable mixture of fBms and PLs motions, or
which may belong to some proper PLs distribution sub-family. Although
such lack of detection is possible, the (generic) identifiable
characteristics of the corresponding distributional law (and,
consequently, of the financial risk) are such as to prevent a simple
matching between the demand and supply. In fact, in this  “irregular”
phase, volatility belongs to a risk class quite similar to the one that
characterizes the “semi-regular” phase. Again, this causes primarily a
lower participation of investors having long horizon lengths (who are
associated with a higher level of risk) and, consequently, a lower liquidity
level and a lower average investment horizon length than in the “regular”
phase foreign currency markets. Moreover, the underlying stochastic
process may or may not be characterized by the statistical self-similarity.
In the first case, for the “irregular” phase, the corresponding Hurst
exponent, H, is lower than that for the “regular” and “semi-regular”
phases. It is simple to prove, under a reasonable assumption on a, that
the proportionality factor a–H is higher for these latter phases.27 In the
second case different horizon length investors do not evaluate
investments in the same proportional way, and so their demands and
supplies do not match.

In particular, in order to explain such a financial environment, we can
conjecture that the corresponding foreign currency markets are
characterized by the arrival of conflicting information. This causes very
different and, often, incompatible behavior among the economic agents.

VII.  Concluding Remarks

All the foreign currency markets studied in this article exhibit a Hurst
exponent that is statistically different from 0.5 in the majority of the
samples studied. Furthermore, it is also found that the Hurst exponent is
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not fixed but it changes dynamically over time.  The interpretation of
these results is that the foreign currency returns follow either a
fractional Brownian motion or a Pareto-Levy stable distribution. The key
question is: what are the implications of such findings on the Efficient
Market Hypothesis? Both in its original formulation and in the recent
more sophisticated elaborations of the random walk hypothesis found in
Campbell, Lo and MacKinlay (1997), the efficient market hypothesis is
associated with returns that follow a Brownian motion with Hurst
exponent equal to 0.5. Rogers (1997) has shown that a market where
the asset returns follow a fractional Brownian motion cannot be efficient
since there always exists an arbitrage strategy.  Our approach has been
to use the statistical evidence in this article to support the proposed
Multi-Fractal Market Hypothesis. Needless to say, this extension of the
traditional Efficient Market Hypothesis needs a further elaboration that
goes beyond the general ideas we have offered in the previous sections.
In particular, we need to develop theoretical explanations for both long-
term positive and negative dependence as well as explanations for the
transition of distributions from Brownian to fractally Brownian or
Pareto-Levy stable.

References

Alexakis, P., and Apergis, N. 1996. ARCH effects and cointegration: Is the
foreign exchange market efficient? Journal of Banking and Finance 20 (4):
687-697.

Andrews, D.W.K. 1991. Heteroscedasticity and autocorrelation consistent
covariance matrix estimation. Econometrica 59 (5): 817-858.

Belkacem, L.; Levy Vehel, J.; and Walter, C.  1996. CAPM, risk and portfolio
selection in stable markets. Rapport de Recherche n. 2776, INRIA, Le
Chesnay Cedex.

Bleaney, M., and Mizen, P.  1996. Nonlinearities in exchange rate dynamics:
Evidence from five currencies. 1973-1994. Economic Record 72(216): 36-45.

Campbell, J.Y.; Lo, A.W.; and MacKinlay, A.C.  1997. The  econometrics of
financial markets. Princeton University Press, Princeton.

Chan, K.; Gup, B.; and Pan, M.S.  1992. Market efficiency and cointegration
tests for foreign currency futures markets. Journal of International
Financial Markets, Institutions & Money 2(1): 78-89.

Cheung, Y.-W., and Lai, K.S.  1993. Do gold market returns have long memory?
The Financial Review 28(2): 181-202.



Multinational Finance Journal96

Chiang, T.C., and Jiang, C.X.  1995. Foreign exchange returns over short and
long horizons. International Review of Economics and Finance 4(3): 267-
282.

Corazza, M.  1996. Long-term memory stability in the Italian stock market.
Economics & Complexity 1(1): 19-28.

Corazza, M.; Malliaris, A.G.; and Nardelli, C.  1997. Searching for fractal
structure in agricultural futures Markets. The Journal of Futures Markets
17(4): 433-473.

Cornell, B.  1977. Spot rates, forward rates and exchange market efficiency.
Journal of Financial Economics 5: 55-65.

Delgado, M.A., and Robinson, P.M.  1996. Optimal spectral bandwidth for long
memory. Statistica Sinica 6(1): 97-112.

Dickey, D.A., and Fuller, W.A.  1979. Distribution of the estimators for
autoregressive time series with a unit root. Journal of the American
Statistical Association 74: 427-431.

Dickey, D.A., and Fuller, W.A.  1981. Likelihood ratio statistics for
autoregressive time series with a unit root. Econometrica 49: 1057-1072.

Evertsz, C.J.G.  1995a. Fractal geometry of financial time series. Fractals 3(3):
609-616.

Evertsz, C.J.G.  1995b. Self-Similarity of high-frequency USD-DEM exchange
rates. Proceedings of the First International Conference on High Frequency
Data in Finance, Zurich.

Evertsz, C.J.G., and Berkner, K.  1995. Large deviation and self-similarity analysis
of graphs: DAX stock prices. Chaos, Solitons & Fractals 6: 121-130.

Falconer, K. 1990. Fractal geometry. John Wiley & Sons, New York.
Fama, E.F.  1970. Efficient capital markets: Review of theory and empirical work.

The Journal of Finance 25: 383-417.
Fama, E.F.  1991. Efficient capital markets: II. The Journal of Finance 46(5): 1575-

1617.
Fang, H.; Lai, K.S.; and Lai, M.  1994. Fractal structure in currency futures price

dynamics. The Journal of Futures Markets 14(2): 169-181.
Frankel, J.A.  1980. Tests of rational expectations in the forward exchange

market. Southern Economic Journal 46: 1083-1101.
Hsieh, D.A.  1989. Testing for nonlinear dependence in daily foreign exchange

rates. Journal of Business 62(3): 339-368.
Hsieh, D.A.  1992. A Nonlinear stochastic rational expectations model of

exchange rates. Journal of International Money and Finance 11(3): 235-
250.

Jacobsen, B.  1996. Long term dependence in stock returns. Journal of
Empirical Finance 3: 393-417.

Kao, G.W., and Ma, C.  1992. Memories, heteroskedasticity, and price limit in
currency futures markets. Journal of Futures Markets 12(6): 679-692.

Kho, B.C.  1996. Time varying risk premia, volatility, and technical trading rule



Multi-Fractality in Currency 97

profits: Evidence from foreign currency futures markets. The Journal of
Financial Economics 41(2): 249-290.

Leachman, L.L., and El  Shazly, M. R.  1992. Cointegration analysis, error
correction models and foreign exchange market efficiency. Journal of
International Financial Markets, Institutions & Money 2(1): 57-77.

Levich, R.M., and Thomas, L.R.  1993. The Significance of technical trading rule
profits in the foreign exchange markets: A bootstrap approach. Journal of
International Money and Finance 12(5):451-474.

Lévy, P.  1925. Calcul des probabilites. Gauthier-Villars, Paris.
Liu, Y. A.; Pan, M.S.; and Hsueh, L.P.  1993. A modified R/S Analysis of long-

term dependence in currency futures prices. Journal of International
Financial Markets, Institutions & Money 3(2): 97-113.

Lo, A.W.  1991. Long-term memory in stock market prices. Econometrica 59(5):
1279-1313.

Lo, A.W., and MacKinlay, A.C.  1988. Stock Market Prices Do not follow
random walks: Evidence from a simple specification test. Review of
Financial Studies 1: 41-66.

Lobato, I., and Robinson, P.M.  1996. Averaged periodogram estimation of long
memory. Journal of Econometrics 73: 303-324.

Lobato, I.N., and Savin, N.E.  1998. Real and spurious long memory properties
of stock market data. preprint, University of Iowa, Iowa City.

Machones, M.; Mase, S.; Plunkett, S.; and Thrash, R.  1994. Price prediction
using nonlinear techniques. The Magazine of Artificial Intelligence in
Finance Fall: 51-56.

Mandelbrot, B.B., and Van Ness J.W.  1968. Fractional Brownian motions,
fractional noises and applications. SIAM Review 10(4): 422-437.

Mandelbrot, B.B., and Wallis, J.R.  1969. Robustness of the rescaled range R/S
in the measurement of noncyclic long run statistical dependence. Water
Resources Research 5: 967-988.

Mittnik, S., and Rachev, S.T.  1993. Reply to comments on modeling asset
returns with alternative stable distributions and some extensions. Economic
Review 12: 347-390.

Ostasiewicz, W.  1996. Advanced financial techniques. Badania Operacyine i
Decyzje 3-4: 161-178.

Pancham, S. 1994. Evidence of the multifractal market hypothesis using wavelet
transforms. mimeo, Florida International University, Miami (downloadable
from the web site: http://home.nyc.rr.com/spancham).

Peltier, R.F., and Levy Vehel, J.  1994. A new method for estimating the
parameter of fractional Brownian motion Rapport de Recherche n. 2396,
INRIA, Le Chesnay Cedex.

Peltier, R.F., and Levy Vehel, J.  1995. MultiFractional Brownian motion:
Definition and preliminary results. Rapport de Recherche n. 2645, INRIA,
Le Chesnay Cedex.



Multinational Finance Journal98

Peters, E.E. 1991. Chaos and order in the capital markets. John Wiley & Sons,
New York.

Peters, E.E. 1994. Fractal market analysis. John Wiley & Sons, New York.
Robinson, P.M.  1994. Semiparametric analysis of long-memory time series.

Annals of Statistics 22: 515-539.
Robinson, P.M. 1994a. Rates of convergence and optimal spectral bandwidth for

long range dependence. Probability Theory and Related Fields 99: 443-473.
Robinson, P.M.  1994b. Time series with strong dependence, in sims. C.A. (ed.)

Advances in Econometrics. Sixth World Congress 1, Cambridge University
Press: 47-95.

Rogers, L.C.G. 1997. Arbitrage with fractional Brownian motion. Mathematical
Finance 7: 95-105.

Samuelson, P.A. 1965. Proof that properly anticipated prices fluctuate randomly.
Industrial Management Review 6: 41-49.

Shubik, M.  1997, Proceedings of a conference on risks involving derivatives
and other new financial instruments. Economic Notes 26: 169-443.

Taqqu, M.S.  1986. A bibliographical guide to self-similar processes and long-
range dependence. In Eberlein, E. and Taqqu, M.S. (eds.) Dependence in
Probability and Statistics, Birkhauser, Boston: 137-162.

Taqqu, M.S.; Teverovsky, V.; and Willinger, W.  1995. Estimators for long-range
dependence: An empirical study. Fractals 3(4): 785-798.

Taylor, S.J. 1992. Rewards available to currency futures speculators:
Compensation for risk or evidence of inefficient pricing? Economic Record,
Supplement: 105-116.

Van De Gucht, L.M.; Dekimpe, M.G.; and Kwok, C.Y.  1996. Persistence in
foreign exchange rates. Journal of International Money and Finance 15(2):
191-220. 

Zhou, B. 1996. High frequency data and volatility in foreign-exchange rates.
Journal of Business and Economic Statistics 14(1): 44-52.


