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Vector autoregressive models are increasingly being used in the analysis of
relationships within and between financial markets. In such models, there are
circumstances that require zero entries in the coefficient matrices. Such
circumstances can be particularly relevant in the context of markets with special
characteristics, such as emerging economies. This paper shows that a direct
extension of the use of the YuleWaker relations for fitting vector
autoregressive models with zero-non-zero patterned coefficient matrices is
inconsistent with statistical procedures as the resultant estimated variance-
covariance matrix of the white noise disturbance process becomes non-
symmetric. This inconsistency can cause a breakdown when testing financial
theory. The paper provides a consistent adjustment which fits with the theory.
The practical use of the adjustment is demonstrated in a vector system
comprising variables from the Hong Kong stock market and foreign exchange
markets (JEL C13, C32, C63, G10, G15).

Keywords. foreign exchange market, timeseries, VAR models, Y ule-Walker
relations.

|. Introduction

Vector autoregressive (VAR) models represent an advance in the
analysis of time series. These models provide adevicethat has proved
to be amore computationally efficient tool, and therefore less costly,

*The authors acknowledge the financial assistance provided by the Australian Research
Council Small Grants Scheme, and the comments of two anonymous referees and the editor.

(Multinational Finance Journal, 2001, vol. 5, no. 1, pp. 35-58)
©Multinational Finance Society, a nonprofit corporation. All rights reserved.
DOI: 10.17578/5-1-2



36 Multinational Finance Journal

than conventional financial and econometrictimeseriestechniques. In
recent years the use of VAR models as a means of modeling financial
timeserieshasbecome common. In particular, VAR modeling hasbeen
increasingly employed to examine rel ationshipsin stock markets. For
instance Eun and Shim (1989) estimate aVVAR using index returns on
nine stock markets to examine interactions among the markets. In the
context of emerging stock markets, Bekaert et al. (1999) estimate a
VAR using capital flows, equity returns, dividend yields and interest
rates to examine the extent to which lower interest rates contribute to
increased capital flows. In asimilar study, Froot et a. (1998) employ
V AR estimation to examinetherel ationship between capital flowsand
equity returnsin emerging markets.

The use of VAR modelsfor econometric research hasin part been
driven by thedesireto provideuserswith arelatively simpleforecasting
procedure accessible to non-specialists. However early researchers
realised that heavy parameterisation of their VAR modelsresulted in
poor ex-ante forecasting performance. Their proposed procedures
rested on theassumption that the coefficient matricesof theV AR model
had all non-zero entries. In effect, the assumption of non-zero entries
restrictstherange of possible model specifications. Further, if thetrue
underlying VAR process has zero entries in its structure, then sub-
optimal model design induced by assuming a full-order structure can
producemisleadinginferencesandinferior projections. Consequently,
model shave been devel oped that allow for zero entriesin the coefficient
matrices such asazero-non-zero (ZNZ) patterned structure. However,
implementation of aZNZ structureinaVAR isdifficult giventhelarge
number of parameters and possibilities. That is, in the absence of an
effective approach to find the optimal model, relaxation of the
assumption of non-zero entriesis problematic.

The issue is also relevant when investigating causality. Optimal
VAR modelswith ZNZ patterned coefficient matricescan also beused
as a basis for detecting Granger-causality and the instantaneous

1. Examples of financial and economic variables that have been tested for Granger-
causal relations include volatility transmission (Bhattacharya et al. 2000), stock markets
and foreign exchange (Bekaert and Hodrick 1992), volatility of stock market returns
(Whitelaw 1994), monetary policy and the stock market (Thorbecke 1997), cross-market
relationships (Malliaris and Urrutia 1992) and interest rates (Hassapis et a. 1999).



VAR Modeling and Yule-Walker Relations 37

causality among time series variables.? Granger-causality and the
instantaneous causality have been defined by Granger (1969), and are
based entirely on the predictability of the objective variables such that
the definitions make no explicit use of economic and financial lawsto
provideapriori restrictionsonthestructure. Assuch, theimposition of
non-zero restrictionsisinconsi stent withtheir basic theory. Further, the
growing reliance on VAR models and their use in testing for causality
is limited to the extent that non-zero entries are initially assumed.

One approach to select the optimal ZNZ patterned VAR model has
been advocated by Penm and Terrell (1984), and it centres on their
development of asearch algorithm using the Y ule-Walker relationsin
conjunctionwith model selection criteria. However, that approach does
not examinetheestimation of theresidual variance-covariancerelation,
rather only the Y ule-Walker coefficient relationsareconsidered. Inthis
paper, an approach is provided that considers the variance-covariance
relation within the Y ule-Walker relationship and leads to an effective
approach to identify the optimal ZNZ model within the context of a
VAR system. The development of the approach in this paper is a
significant contribution given the extent to which prior literature has
imposed non-zero restrictions. The paper provides an empirica
application of the approach that focuses on the Hong Kong stock
market. Theapplication highlightstheusefulnessand practicality of the
approach.

The remainder of this paper is organised as follows. Section 1l
provides the detailed background and describes the use of the Y ule-
Walker relationsfor fittingV AR models. Section |11 showsthe problems
and theoretical inconsistency that arise by using atwo-variable VAR
example. Section |V presentsthe new approach and containsthe main
contribution of the paper. In section V, an application concerning the
Hong Kong stock market and theforeign exchange market ispresented
and concluding remarks are provided in section V1.

II. UsingtheYule-Walker Relationsfor FittingVAR Modds

Inthissection, thefitting of aVAR with zero coefficient restrictionsis

2. Of note, recent cointegration work suggests that, if cointegrating relations exist
between the variables, then the use of the vector error-correction model, which is associated
with the VAR model with unit roots, may be more effective for testing Granger-causality.
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presented. First, let u (t) ={u, (t),u, (t)....,u,, (t} be a zero mean,

wide-sense stationary time series of dimensionm. Consider thevector
AR (p) model of the form:

ZA\U(t—k):g(t), 1)

where A=I1, A, k=1,..., parethe mxm parameter matricesand &(t) isan
mx1 stationary vector process with E{ &(t)} =0, and thus:

. [FV ask =0
E{e(t)e (t-k} %:Oask>0' 2

The sample lag covariance matrices,
1 N-k ,
Fk—ﬁgu(wk)u (). (3

obey thefollowing Y ule-Walker relations. TheY ule-Walker coefficient
relations are:

P .
Fj+zlAkrj_k:O (j:l,...,p). 4
The Yule-Walker residual variance-covariance relation is:
P . "
M+ ZAkr_k:V, )]

where ', =T, ; Nisthesample size, A and V arethe estimates of

A, and V respectively, and ‘\7‘ isdescribed asthe generalised residual

sum of sguares.
Inafull-order VAR model, al possible model swith zero coefficient
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elementsare neglected. For exampleinabivariate VAR model whenp
=5, the coefficients, A;, A,, up to and including A; are assumed non-
zero. However there are 22° = 65,536 possible modelsin thisexample.
Thus a large number of possible models will be ignored under the
restriction of non-zero coefficients. More important, if the true
underlying VAR processhasazero-non-zero (ZNZ) patterned structure,
asub-optimal model design such asafull-order structure can produce
lesspowerful and therefore potentially mideadinginferencesandinferior
projections.

Penmand Terrell (1984) have proposed asearch algorithm, usingthe
Y ule-Walker relationsfor fitting VAR model sin conjunction with model
selection criteria, to select the optimal ZNZ patterned VAR models.
Backgroundinformation on thefitting of VAR modelsusingthe Y ule-
Walker relationsis presented in appendix 1. In the course of using the
Y ule-Walker relationsto conduct thefitting of ZNZ patterned VAR (p)
models, as described in appendix 1, only the following p+1 lag
covariance matrices arerequired to compute the estimated coefficient
matrices and residual variance-covariance matrix::

P ISR

p*

However, the estimated V using the usual least squares (L S) methodis
asfollows:

‘ -

R N
V_N_pi:z

where £ denotes the estimate of £(i) .

Thismethod suffersfrom the need to estimateand storeall individual
mx1 residua vectors, & ,t=1, 2,..., N and then compute V for each
proposed ZNZ patterned VAR model. In order to estimate individual
residual vectors, all observationvectorsu(t),t=1, 2,..., N must be held
in storage for conducting &, estimation. When using the LS method, a
very large number of candidate ZNZ patterned VAR models must be
estimated before the optimal model can be selected, which involvesa

considerable amount of computational cost intermsof execution time
and memory storage and these costsareimportant considerations. Many
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researchers, working withlargesampleswill beawareof thisinefficient
procedure. It is obvious that estimation of the residual variance-
covariance matrix, which minimizesthe need for computing resources,
becomes an important issue. As outlined later in the paper, thereisno
needto estimateindividual residual vectorswhen an adjustmentismade
to the Y ule-Walker approach. This approach is simple and avoids a
considerable amount of computational costs.

Theissuein Penmand Terrell (1984) isthat their estimateof V using
the Yule-Walker residual variance-covariance relation of (5) is not
analyzed. Only the Yule-Walker coefficient relations in (4) are
canvassed. A direct extension of the Yule-Walker residual variance-
covariancerelationtofit theZNZ patterned VAR model isinappropriate
as it is inconsistent with statistical theory. The problem is that the
resultant estimated variance-covariance matrix of the white noise
processbecomesnon-symmetric, violating the condition that V must be
symmetric. Thisviolation hasimportant implications. One consequence
is that VAR cannot be converted to an equivalent vector moving
average (VMA) model as proposed in Penm and Terrell (1986) to
conduct testing for Granger-causality. Further, innovation accounting
proposed by Lee(1992) will not work under these conditions (Brailsford
et a. 2001). Hence, this failure to ensure symmetry of estimates of V
createsthemotivation for devel oping an adjustment in this paper tothe
Y ule-Walker relations for fitting of ZNZ patterned VAR models.

Analternativesolutionisto useother approachesthat donot rely on
the Yule-Walker relations. However, each of these approaches are
problematic, particularly interms of large computational costs. These
alternative methods are briefly outlined below.

First, consider the standard least squares (LS) approach. As
describedinappendix 1, for fitting afull-order VAR (p) model usingthe
Y ule-Walker relations, thefollowing block Toeplitz matrix C,,.,canbe
constructed:

.o
] .
_ r r _ :
C :a_l :0 ?lgzg:p E’ (6)
- g O Mo
B
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and the following relation for the estimate of |V|:

Vo[ =[G

/) =[4,.]. o

whered, i =1,..., p+1 arediagona block entries of the block diagonal
matrix resulting from a block Choleski decomposition for C,,; This

outcomeindicatesthat inthe course of computing ‘Vp‘ fortheVAR(p)

model, thegeneralised residual sumsof squares®for all thelower order
VAR modelsfitted to the dataare al so obtained. However as described
inappendix 2, thisoutcome cannot be achieved by using the conventional
LS approach. Since R (p) for each different VAR model must be
reconstructed from the observationsto conduct individual fittings, and
the observations must be saved in storage for reconstructing R (i), i =
1,..., p, a considerable increase in computational costs, based on
execution time and data storage, will be required. Note that these
weaknesses of the conventional LS method also exist intheremaining
steps of selecting the optimal VAR, and become severe when the
number of lags, or the number of variables, islarge. Thusthecommonly
employed L Sapproachisconsiderably morecomputationally costly than
the Yule-Walker approach.

Second, the generalized least squares (GLS) method can be
conducted by applying the conventional LS approach asabasis. After

the symmetric and positive definite VV isestimated by the LS method,
thereexistsan mxm non-singular matrix K ,suchthat V' = KK' .We

can pre-multiply u(t) by K™, and then follow the LS estimation for
fitting of the VAR modelsto obtain the conventional GLS estimates.
However as the LS approach to conduct the selection of the optimal
ZNZ patterned VAR iscomputationally expensivewhen the number of
possible candidate models could be hillions, the conventional GLS
method will similarly suffer from excessive computational costs.
Third, the maximum likelihood (ML) approach is a non-linear
approach but becomes infeasible whenever the number of parameters
islarge (Chenand Zadrozny 1998). In addition there exist innumerable

3. The proposed model selection criteria use the generalised residual sums of squares
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candidate models in the ZNZ patterned VAR environment. The ML
approach needsto apply to eachindividual VAR model separately, and
no previous computational information can be utilised.

Chen and Zadrozny (1998) propose the extended Y ule-Walker
equationto estimateaVV AR for mixed frequency data. Theestimated V
for their approach is as follows:*

U

AH)

- 1 N
V= .
N_pi:;rlgl

whichisidentical tothe conventional LS approach. Thustheapproach
of Chen and Zadrozny also needs to consider each VAR model
independently for estimation of the individual residual variance-
covariance matrices. In complete data cases (ie. no missing values),
their approach only concerns full-order models. The ZNZ patterned
modeling with no missing dataisnot investigated in Chenand Zadrozny.®

Inappendix 2, itisshown that the conventional LS method isquite

different fromtheY ule-Walker approach. Thus, V us ngtheL Smethod

is also quite different from V under the Y ule-Walker approach. It
followsthat the approach of Chen and Zadrozny (1998) hasignoredthe

issueof estimating theresidua variance-covariancematrix. Although v

usingthe L Smethod isasymptotically equivalent to V usi ngtheYule-
Walker approach, thesetwo estimators can be quitedifferentinafinite

sample. If V proposed in Chen and Zadrozny is estimated using the
Y ule-Walker approach, then in the case of compl ete datathe approach
in the current paper can be employed to select the optimal ZNZ
patterned VAR. Thus, again a considerable amount of computational
costs can be avoided.

Themost successful applicationsin ZNZ patterned VAR modeling
are associated with Granger non-causality and indirect causality
detection. This is because both Granger non-causality and indirect

4. Seesection 3in Chen and Zadrozny (1998).

5. However the approach in Chen and Zadrozny (1998) addresses an interesting topic
of estimation for mixed frequency data. Incorporating their approach into the ZNZ
patterned modeling for mixed frequency data deserves further investigation.
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causality detections are crucialy dependent on making use of zero
coefficient entriesinthetruestructure, wherethestructure doesindeed
include severa zero entries. Application of VARS to economic and
financia time series data has revealed that zero entries are indeed
possible(Caineseta. 1981, Penmet al. 1992). Sincethe ZNZ patterned
VAR modeling allows for zero entries, the selected optimal ZNZ
patterned VAR provides a straightforward and effective means of
indicating all Granger-causality, Granger non-causality and indirect
causality from the coefficient matrices on the lagged terms.

[11. Thelnconsistency in Using Yule-Walker Relations

In this section, the theoretical inconsistency of the use of the Yule-
Walker relations for fitting of ZNZ patterned VAR models is
demonstrated using a two-asset example.

In considering a ZNZ patterned VAR model, zero entries in the
parameter matrices A, of (1) are allowed. If y;, and y,, are the log
prices of the assets, then the returns on the assets are defined by
Ay, =z,and Ay, =z,,.Both z, and z,, arejointly determined by

the following two equations:
ZtapZ) o =&y ©)
Lyt anZ gt a2, =&, - ©)

In thistwo-equation systemthefirst equation showsthat z,, iscaused
by z,, , whilethesecond equationindicatesthat z,, iscausedby z ,

thereby creating a feedback relation.
Theequivalent VAR model of thissystem canthen beexpressed as:

0 0o Mz, [ O&l
@m% e e, (10)
[ 1 anl%0 [ ¢4

wherethewhite noise process comprisestwo components e, and &, ,
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with:

E{e.} =H &} =0,

qE,, 0 =V ask =0
E ' & .
%Zt%@l,t—k 2tk _ 5 2sk >0

and

TheY ule-Walker coefficient relationsarenow used to estimate a, ,, a,,,
and a,,. Since a;; = 0, and ¢, is uncorrelated with the asset return,

z,,., » thefollowing relation is apparent:

E{z.z,} +4.§ z,.2,} =0,

where & are the estimates of a;. Thus we will achieve

a, = -1,,(1)/1,,(0), where the correlation functions between asset
returns,

=1, (0=5 3 2492, 1) =, ().

From (10), sincetheasset returnvector Zz,t_lﬁ' isuncorrelated

with &, &, , thefollowing arises:

1, (0) 7 (O)B0_ L (1§ 1

30 (0) 7, OFRH T

Hence,

s _TIn (0)7,(1)-7,(0)r (1)

% 7 (0)r0 (0) =7, (0)r, (0)

and



VAR Modeling and Yule-Walker Relations 45

. _ 1,(0)7,,(1)-7,,(0),, (1)

% = Ty (O)Tzz (O) e (O)le (O) |

Thus the coefficient estimates in terms of the correlation functions
between asset returns are established. Of note, the use of the above
approach is identical to the use of equation (A.1.3) as proposed in
appendix 1 for fitting of the ZNZ patterned VAR models.

As aresult the estimate V in equation 5 becomes:

~ ,(0) 1,(0)0
Ve %12 0) (O)E

O AT, (1) I (1) O

+ A\ ~ 2 , 12
e ()4 a0 (1) arn@+ar,@f 2

whichisnon-symmetric. Intuitively, Vissymmetricinthetruemodel of
(1) and thereis aneed for the estimateV to conform to the behaviour
of V. Therefore the estimateV must be a symmetric matrix. As

described earlier, thisnon-symmetric V viol atesthesymmetric condition
required in Lee (1992) and in Penm and Terrell (1986). Thisviolation
indicatesthat, in practice, theinnovation accounting describedin Leewill
notwork (Brailsfordetal. 2001), andaVAR model cannot beconverted
to its equivalent VMA model as proposed in Penm and Terrell to
conduct testing for Granger-causality. Thusan adjustment tothe Y ule-
Walker relations is required.

V. TheAdjustment

The necessary adjustment to the Y ule-Walker relations for fitting of
VAR modelswith ZNZ patterned coefficient matricesfollowsdirectly
from the inconsistency demonstrated in the previous section.

With the definition of the variance-covariance matrix in (2),
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HeE O
V=E %;E@lt &

H.0 00 %DDZM-DE

=E
%ﬂﬂ %2 aZZEIDZQt DE

o wEfe wB

Then the estimate

- |:Tll(o) TlZ (O)D
H.(0) 7,01

0 a,7;,(D) a,T 5, (1) H
+ A A A O
%’217—11(1) +auT,(1) AT (1) +aT , ()
(13)
Eaiz 2D T, +a,r, (1) 0
%127'22 Q) ar,@)+ar, (1)D

.o %DDTM(O) r,,(0m 0 é@
%’z azzDDTu(O) Tzz(o% a,

Sincethefirst matrix of equation 13issymmetric, the second matrix
isthetranspose of thethird matrix, and the remaining product matrix is

also symmetric, therefore the matrix V is symmetric.
Ananalogousapproach using equation 13isfeasible. From equation

il O0e .\ [
V=E t-k "(t—-1)Am.
T AR (DAL

2,

Then,
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n [N p n PP n (14)
V=T + YA, +ST A+ AT L A. 14

Itisobviousthat this V issymmetric.Since ', =T, I, issymmetric.

If kisredefined asj, the second matrix is the transpose of the third
matrix; and if j and k are redefined as k and j respectively, the fourth

matrix becomes
PP ~
2240
= J:

which is the transpose of the fourth matrix itself.

In addition, comparing equation 14 to the estimator of V using
individual residual vectors, the structure of (14) is computationally
efficient intermsof both execution timeand storage requirements, and
provides the obvious relations to link the covariance matrices with
different lags.

Of note, consideration of the contemporaneouscorrelationin & (t)

cannot be ignored. A ZNZ patterned VAR model can be viewed asa
system of ‘ seemingly unrelated regressions’ asoriginally proposed by
Zeller (1962). Astheregressorsin each equation of theVAR model are
no longer necessarily the same, the generalised least squares (GLS)
coefficient estimator using the Yule-Walker relations for the ZNZ
patterned V AR ismoreefficient than the estimator using equation (14).
Brailsford et a. (2001) show that thisGL Sestimator isan approximation
tothe ML estimator asymptotically. Henceforth the notation GLS- YW

is used for this estimator. As described earlier, V1=KK'. We

premultiply u(t) by K ™, andthenfollow the proposed method of using
theYule-Walker relationsfor fitting of VAR models, and so obtainthe
GLS-YW coefficient estimates of the ZNZ patterned VAR model.

V. Empirical Testing

Inthissection, anapplicationispresented toillustratethe practical use
of theagorithm. First, consider apotential causality relationship between
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stock and exchange rate markets. For instance, flows of capital
influence exchange rate movements and such flows have been shown
to be related to equity returns (eg. Froot et al. 1998). Of course, the
relationship between exchange rates and stock pricesismore complex
than implied here and involves consideration of parity conditions and
inflationary expectations.® Neverthel ess, thepurpose hereisillustrative
only and shows how the effect of correctly estimating the residual
variance-covariance matrix can provide insights into Granger-causal
relationships among financial variables. Inasimilar vein, Bekaert and
Hodrick (1992) examinethe predictability of excess returns on equity
and foreign exchange markets using a six-variable VAR model.

The sample period is chosen as 1 January 1999 to 31 December
1999 and all dataare sampled daily. Thesel ected equity marketisHong
Kong. Thismarket isan international financial centre, and allowsfree
flows of international funds. Within this context, the following three
variables are studied contemporaneously in astochastic vector system
using the ZNZ patterned VAR modeling:

(i) EurotoUSdollar - exchange rate (EUFX)
(i) Hong Kong's Hang Seng - stock price index (HSI)
(iii) Hong Kong dollar to US dollar - exchange rate (HKFX)

TheHang Seng Index isthe main stock market indi cator in Hong Kong.
Thisindex comprises 33 constituent stockswhich arerepresentative of
the market. The aggregate market capitalization of these stocks
accounts for about 70% of the total market capitalization on Hong
Kong's stock exchange. At the beginning of 1999 the HSI was 9,000.
However it climbed to 17,000 by the end of 1999, closing with a 90%
gain over the year.

The Hong Kong Monetary Authority uses apegged exchange rate
fixed at HK$7.8 to US$1. However, deviations from this rate occur
through the dealer market.” The sample period coincides with the
introduction of the Euro.

6. The relationship between stock prices and exchange rates has a considerable
literature which involves purchasing power parity. For discussion, see Frenkel (1981),
Dumas and Solnik (1995).

7. In Hong Kong, only the Hong Kong Monetary Authority uses the fixed exchange
rate. Thisfixed rate does not apply to other dealers and fluctuations thus occur.
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TABLE 1. Orthogonal Polynomial Regression for Trend Removal

Intercept Orthogonal polynomial P,
Log(EUFX) —.1159 .0004
(.0028) (.0000)
Log(HSI) 9.2064 .0018
(.0093) (.0000)
Log(HSFX) 2.0469 .0001
(.0000) (.0000)

Note: This table reports the results of fitting a first-order polynomial to the three time
series under examination. The series comprise daily data sampled over the period 1/1/1999
to 31/12/1999 and are the Euro (EUFX), Hang Seng Stock Index (HIS) and the Hong Kong
dollar exchange rate (HSFX). The values in parentheses are standard errors of the coefficient
estimates.

The variables are log transformed such that u,(t)=log(EUFX),
u,(t)=log(HSI) and u,(t)=log(HKFX). Following Penm and Terrell
(1984), Forsythe's (1957) method is initially used for generating
orthogonal polynomials to assess the data for suitable detrending to
produce stationarity.® The results show that detrending using a first-
order polynomial is required before fitting the VAR models. The
coefficient estimates and associated standard errors from fitting the
polynomial are reported in table 1.

After detrending, amaximum order of 36 isassigned and thesearch
proceduresproposedin Penmand Terrell (1984) areemployedto obtain
the optimal ZNZ patterned VAR model. Each of three order selection
criteria- Akaike, Schwarz and Hannan - is used to determine the best
specification. The ability of these three order selection criteria to
determinethetrue specification of astationary VAR hasbeen examined
using asimulation approach by Penm and Terrell (1984). Their results
suggest that the Schwarz criterion (SC) issuperior in order-identification
to the other two alternatives in ZNZ patterned VAR modeling for
causality studies. Therefore, the specification determined by SC is
selected and used as the benchmark model for analysing lead-lag
relations.

8. There is a large literature that traverses the best method of removing non-
stationarity in a series. The approach here involves a polynomia trend, because of its
ability to remove the long-term non-stationarity in any series without seriously impacting
on other cyclical variation closely adjacent to non-stationary long-term movements.
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TABLE 2. TheOptimal ZNZ Patterned VAR

Coefficient Estimator The Yule-Walker Approach GLS YW
9630 O 0 O [.9630 0 0 O
Typeof Ho172) 5 Ho7y .

- ~ 0-1680 -9416 0 O 0-0061 -.9409 0 O
coefficient Al 0 O 0O 0O
matrices [(.0585) (.0183) O [.0016) (.0172) 0
elected Hooo9 0 -g700J H0053 0  -.87053

F.0004) (0311)F {.0018) (.0303F
Estimate of
Residual 0.3783 .1239 -.00070)
variance- H1239 2732 00067
covariance F-.0007 .0006 .0001H
matrix (x 10%)
Residual analysis p 0 1 2 3 4 5
Value of SC 1.0 1.031 1.065 1.102 1141 1180

Note: This table presents the results from fitting a VAR to the three time series under
examination. The series comprise daily data sampled over the period 1/1/1999 to
31/12/1999 and are the Euro (EUFX), Hang Seng Stock Index (HIS) and the Hong Kong
dollar exchange rate (HSFX). The values in parentheses are standard errors of the non-zero
coefficient estimates. The selection criterion employed is Schwarz criterion (SC) and
normalised values of SC are presented. The optimal lag selected for the variables under
investigation in the VAR is 1. The residual analysis confirms the residuals have white noise
characteristics.

u(t) = {log EUFX, log HSI, log HKFX}’

The coefficient estimates of the chosen specification using the
adjusted Y ule-Walker relations are presented in table 2. To check the
adequacy of the model fit, the strategy suggested in Tiao and Tsay
(1989) isused, with the proposed a gorithm applied to test the residual
vector series, using the SC criterion.® Theresultsin table 2 support the
residual vector being awhite noiseprocess. Theproceduresoutlinedin
section |V to obtain the GLS-YW estimator are then carried out, with

9. Tiao and Tsay (1989) proposed an algorithm using the crit(m,j) criterion to select
the vector autoregressive moving average process with zero entries. After the final model
is selected, their algorithm was then applied to the residual series to test whether this series
is a vector white noise process.
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the resultant comparative output also presented in table 2.

The relationships identified by the three selection criteria are
markedly similar. All thedetermined specificationsconsistently indicate
that the Euroisthemajor variablewhich providesleadinginformation for
the other componentsof the system. Thelagged Euro entersnot only its
own equation but also those of HSI and HKFX. In al the determined
specifications, the lagged level of HSI does not enter any of the
exchange rate equations, indicating that variations in the Hong Kong
stock market index providelittleleading information for the exchange
rate markets, asexpected. Alsonolagged HKFX componentsenter the
equation of theHS| and EUFX, indicating that thisvariablecontainslittle
leadinginformationfor either thelocal stock market or the Euro. Given
that the HKFX isrelatively stable, thislatter result is not surprising.

Themore surprising result istheinfluence of the Euro. Hong Kong
is known as an open market and there are considerable international
capital flowsinto and out of its stock market. A major component of
these flows is from Europe. Moreover, it is well-known that the
weaknessof the Euro hasbeen asalient featureininternational markets
over the past two years. As noted above, over the sample period, the
Hong Kong market surged by 90%. Hence, alink between the Euro and
the Hong Kong stock market is feasible.

A more complete analysis would include other economic and
financial variables such as net capital flows, interest rates and money
supply, which couldall play asignificant role. Indeed, our model could
beextendedtoincorporatetherecent work of Bekaert et al. (1999) who
propose alarger system. However, as discussed earlier, thisempirical
examination is for illustrative purposes. The importance of this
applicationisthat it showsthe procedureswhich can be applied to any
set of variables. As an example, in the context of emerging markets
wheretraditional model sand theorieshave met with little success, such
exercisesarelikely to provideva uableinsightsinto therel ationshipsand
causality between financia variables.

V1. Conclusion

Theuseof VAR modelinginfinancial economicshasbecomecommon.
However, the models are typically constrained through problems of



52 Multinational Finance Journal

over-parameterisation. Inthispaper, an adjustment tothe Y ule-Walker
relations for fitting of ZNZ patterned VAR modelsis presented. The
adjustment isconsi stent with statistical proceduresintheory and hasthe
advantages of computational efficiency and reliability.

The procedure has been applied to the Hong Kong stock market,
focusing onitsrelationship withinternational foreign exchange markets.
The results of this exercise are helpful in understanding linkages
between various marketsand/or financial variables. Asindicated above,
intheareaof emerging marketswherethereisoften no clear consensus
concerning relationships among financial variables and each market
appears to exhibit almost unique characteristics, this procedure can
potentially yield important insights.

Appendix 1. The Use of the Yule-Walker Relationsfor Fitting
VAR Models

Three model selection criteriaare employed to select the optimal ZNZ
patterned VAR. They are:

AIC =log|V,| +[2/N] S,
HC = Iog‘\7p‘ +[2loglogN /N] S,

SC=Iog‘\7p‘+[IogN/N]S,

where S is the number of functionally independent parameters
estimated.

The detailed method of selecting the optimal ZNZ patterned VAR
with the smallest value of each selection criterion is summarised in
Brailsford et al. (2001).

A. Fitting of full-order VAR models

Inconsideringtheuseof the'Y ule-Walker coefficient relationsfor fitting
of afull-order VAR(p) model of (1), equation 4 can be expressed as:
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AR =-1, (A.1.1)
where
n={A A .. A},
r|p={r1 r, rp},
and
ar, M. rl—pD
0 0
R=Drl M A
T : o
0
%p—l -2 Mo g

Anaogoudly, to fit aVAR (p+1) model, we have:

T, M, - r_pg
= o Tug R0
+l . . . .
P D: . . B D rOD

%p I’;)_l r'OE

Now form ablock Toeplitz matrix C,,,, of (6), and have the following
block Choleski decomposition:

D, ,L

p+1=pHLps1

C,.=L (A.1.2)

where L _,, isalower block triangular matrix, and D_,, is ablock

p+l

diagonal matrix with diagonal block entries d. , i =1,..., p+1.

p+l

Thus, wehave ‘C

:‘cpHro - rpRglr'p‘: ‘Cpr‘ , and canachieve

p+1

o+1| - Moreimportantly, inthe courseof computing

theoutcome: M‘ = ‘d

V.| ,d,i=1,..., p+Lwill beobtainedby using (A.1.2). Since |d, | isthe M

fortheVAR (i—1) model, the generalised residual sum of squaresfor al
the lower order VAR models fitted to the data are also obtained.
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Thereforeaconsiderableamount of computational cost can beavoided.

B. Fitting of ZNZ patterned VAR models

Inconsideringtheuseof theY ule-Walker coefficient relationsfor fitting
of ZNZ patterned VAR modelsof (1), the coefficient estimatesobey the
following relationship:

Z,(C)a(c)=v(c), (A.13)

where Z, ={1,,0R}, a =vec{A}, y=vec{M'} ,C,isaninteger
set which contains ¢, c,,...,c, ,andthe (c,,c,,...,c, ) thentriesof
areconstrainedtozero. Then a (C, ) and y (C, ) areformed by placing
Ointhe (c,c,,...,c ) the row entriesof @ and y,and Z(C,) is
formed by placing 1 in the {(c..c,).(c,.c,).....(c..c,} diagonal

entries of Z and O everywhere else in the (c,c,,...,c,) rows and

columns of Z.
Also, the estimate of V is:

\7ﬂo*ifkr—k*iri&*iiﬁ%rw/&?’
4 Z &

which is the equation (14) in this paper.
Note that only the p+1 lag covariance matrices shown in (3) are

required to compute A( and V by using the Y ule-Walker approach.

Further, fitting of subset VAR models, whicharethe VAR modelswith
intermediatelags constrained to zero matrices, can al so be achieved by
using both (A.1.3) and (14).

Appendix 2. The Use of the LS Method for Fitting of VAR
Models

Tofitafull order VAR (p) model of (1) for agiven set of observations
{u(®), t=1,..., N}, the estimated V using the usual least squares (LS)
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method is as follows:

S &, (A2.1)

where £ denotesthe estimate of £(i).

For simplicity, consider thescalar case. Thusm=1. Equation (A.2.1)
can be rewritten as:

v :ﬁiil@(t)—iéku(t —k)%y(t)—iéku(t —k@ .

Thus the associated linear regression model can be expressed as:

Du(N) O Du(N - - u(N pp O~a 0 Oe(N) D
D . 0.0 . . . o0.0.o0
B+ B up) - u@ 8] %(pﬂ)H
Theusual least squaresestimateof S =H-a, -+ —a,H inthemodel
Y=XB+n,
isthen:
B=(XX)"XY.
Thus we have:
Rs(p)=(XX)
- S S u(u(i- p+3f5
O '=p 1=p O
=0 0.
- N-1 O
> u@u(i-p+1) - Zuz(l) E
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Analogoudly, to fit aVAR (p—1) model, we have:

RLS(p—1)=
SR O N zuo)uo p+1f]
|:| i=p-1 i=p-1 |:|
=0 : : : .
O, 0
ég u()u(i-p+1) Z (i) E
However
¢ERLs(p 1) g
Rs(p) =5

Notethat every (ij) entry of R ¢ (p-1) isdifferentfromthe(i,j) entry

of R (p).Itisobviousthat theusual LSmethodisquitedifferent from

the Yule-Walker approach.

Thus, infitting aVAR (p) model, the generalised residual sum of
squaresfor all thelower order VAR model sfitted to the data cannot be
obtained by using the L Smethod. Notethat theseweaknessesof theLS
method also exist in fitting for VAR models with zero entries, and
become severe when the number of lags of (1), or the number of
variables in the system, is large.
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