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This article presents a simple methodology for computing Value at Risk
(VaR) for a portfolio of financial instruments that is sensitive to market risk,
rating change, and default risk. An integrated model for market and credit risks
is developed.  The Jarrow, Lando and Turnbull model (the Markov chain model)
is used to represent the dynamics of the credit rating.  Procedures for
calculating VaR are presented.  Numerical illustration results are included (JEL
G10, D81). 
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I. Introduction

Broadly speaking, risk management includes the management of both
financial and non-financial risk. Financial risk includes market risk and
credit risk whereas non-financial risk includes operational risk, regulatory
risk, legal risk, and event risk. In this paper, we shall be focusing on
financial risk. 

Alfred Steinherr (1988) stressed the significance of modern risk
management by calling it “one of the most important innovations of the
20th Century.”

Investment banks and financial institutions around the world seek
various methods and tools to manage the risks they face.  Due to the
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recent rapid development of the derivative market, the tasks involved in
risk management have become even more challenging than before.  This
has accelerated the development of more advanced techniques of risk
management.  Traditionally, volatility was the risk measure commonly
used by the finance community, but recently Value at Risk (VaR) has
also become a very popular measure of risk.  VaR is an attempt to
summarize the total risk of a portfolio with a single number that is the
statistical estimation of a portfolio loss.  The VaR is the amount, with a
given (small) probability, that we may lose over a given (typically short)
holding period.  Along with this probability there is also a possibility that
we may lose more. Both Embrechts (2000) and J. P. Morgan's “Risk
MetricsTM - Technical Document” give an introduction to VaR while a
useful survey is presented by Duffie and Pan (1997).  Credit risk has
perhaps become the key risk management challenge since the late
1990s.  J. P. Morgan's “Introduction to CreditMetrics” provides an
overview of this subject. Ong (1999) provides a coherent framework for
thinking about and modeling bank credit risk. In 1997, Jarrow, Lando and
Turnbull (JLT) proposed a Markov chain model for valuing risky debts
that explicitly incorporate a firm's credit rating as an indicator of the
likelihood of default.  Kijima and Komoribayushi (1998) studied this
model further.  More recently, Arvanitis, Gregory and Laurent (1999)
have built models for credit spreads and used a Markov chain to
represent the credit rating dynamics.

Of course, in most markets nowadays, both market and credit risks
have been measured and quantified using agreed methodologies.
However, risk managers are increasingly seeking quantified and
integrated risk management tools that can capture market exposure,
rating change, and default risk. Recent developments in integrating
market risk and credit risk analysis were presented by Huang (2000).
This paper presents a simple model for integrated risk management.  We
assume that firms face both market and credit risks.  The credit risk
ratings are modelled by using the JLT (1997) Markov chain model (see
also Kijima and Komoribayashi (1998)).  It is well known that VaR has
been used successfully in measuring and managing market risk.  Due to
its skewed distribution, modelling credit risk is neither analytically nor
practically easy.  In the first part of this paper, we present an integrated
risk assessment within a VaR context and discuss VaR calculation
procedures. The analytical tools in this paper are similar to those in Yang
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(2000).  In Yang (2000), an insurance risk model with credit risk was
considered. Some commonly discussed problems in risk theory, such as
ruin probability, ruin time distribution, severity of ruin, and joint
distribution of surplus before and after ruin, were addressed. In the
second part of this paper, we use some of the results from Yang (2000)
in the context of credit risk rather than ruin theory.  Some numerical
results illustrating how to analyze default risk are included.

This paper proceeds as follows. Section II presents the problem
formulation and the procedures used for VaR calculation.  An illustrative
example is also included. Section III discusses the distributions of the
default probabilities and the time of default.  Some illustrative numerical
results are included as well. The final section contains some concluding
remarks.

II. An Integrated Method for Managing Market and Credit
Risks

In this paper, we consider a firm that could be either a financial
corporation or an insurance company.  At the beginning of each time
interval, a rating agency will provide a credit rating to assess the firm’s
abilities to meet its debt obligations (to pay possible claims in an
insurance company case).  The rating of the firm is based on its financial
situation and initial surplus. The firm also faces exposure to market-
based financial risk. We will propose an integrated method to measure
the risk faced by the firm.

A.  Credit and Market Risk Models

This paper uses a Markov chain model for the dynamics of the firm’s
credit ratings (see JLT (1997)).  The only difference here to JLT (1997)
is that the default state is not included in the state space of the Markov
chain.

Let It be a time-homogeneous Markov chain with state space N={1,
2,..., k} where state 1 represents the highest credit class and state k
represents the lowest.  According to Moody’s ratings, state 1 can be
thought of as Aaa and state k as Caa, whereas according to S&P’s
ratings, state 1 can be thought of as AAA and state k as CCC.  In our
formulation, we are not including the default state in the transition
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matrix.  Let 
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be the one-step transition probabilities.  The transition matrix of the
Markov chain It can then be written as
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Let u be the initial surplus of the firm and let  be the portfolioi
nX∆

change in the nth time interval when the firm’s credit rating in the time
interval n is of class i.  The surplus of the firm at time n can then be
written as

, (3)1
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where we assume that , m=1,2,... are independent, 1, ,i
mX i k∆ = �

random variables. If Un�0 we say that default occurred at time n.

We will assume that for any fixed i = 1,..., k, , m = 1,2,...,  arei
mX∆

identically distributed and  are independent but may have1, , kX X∆ ∆�
different distributions.  For example, we may assume that  only1X∆
takes positive values, that  may take negative values with highkX∆
probabilities, and that the process will stop if default occurs.  The market
risk focuses on the firm’s investments in the market. This paper models
the market risk by assuming that the portfolio’s change in each time
interval is random.  For example, if we assume that the investment
return follows a normal distribution, we can also assume that the
portfolio change in each interval follows a normal distribution. Although
the firm investments in the market do not depend on the credit rating, the
firm’s portfolio change in each time interval depends on both the firm’s
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investments in the market and the rating of the credit.  Therefore, in our
model, the market risk is built in the distribution of .  From now on,i

mX∆
the distribution of  is denoted by Fi(x).iX∆

Remarks:

1. The assumption that It is a time-homogeneous Markov chain is only
made to simplify notations.  All the analyses in this paper work, even
if It is a non-homogeneous Markov chain.

2. The probability transition matrix, Q, can be estimated using historical
data.  We may also be able to use some results currently available
in the literature.  For example, from J. P. Morgan’s home page
(http://www.riskmetrics.com).

3. The assumption that for any fixed , is{ }1, , , , 1, 2,i
ni k X n∈ ∆ =� �

i.i.d. can be relaxed.  If we now assume that the business will
expand and that the growth rate over each time interval is a constant,
the following model can be used for the dynamics of the surplus
process:

, (4)( )1
1

1

1m

n
mI

n m
m

U u X r−
−

=

= + ∆ +∑

where r is the business growth rate.  With all other assumptions
remaining the same as before, the results presented in this paper can be
extended to this model without difficulty.  Mathematically, model (4) is
the same as that in Yang (1999) where an insurance risk model with
interest incomes was considered. 

B. VaR approach

Suppose we are at time 0 and there is a 5% probability that we may
incur a certain amount of loss or more over the next time period, say of
one day.  This amount of portfolio loss is what we are concerned about.
We call it the 95% VaR.  It can also be interpreted as a minimum
margin requirement.  The one-day VaR at a 5% confidence level can be
defined using the following equation (the confidence percentage can be
changed to any other value):
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( ) ( ){ }0

1

,
5% 1 inf 5% ,i u

YVaR Y y F y∆∆ = − ∈ >�

where  is the conditional probability distribution of  knowing0

1

,i u
YF∆ 1Y∆

that Io=i0 and U0=u.  Let T= inf{n; Un � 0}.  The stopping time, T, is
called the default time. In practice, we may also become interested in
the VaR for more than one day, say for n days.  The n-day VaR can be
defined in a similar way to the one-day VaR.  However, since the
default may occur in less than n days, we need to divide the problem into
two cases.  This motivates us to consider the following problems: For y
� u, 

. (5){ }0 0 0, , , 5%jP Y y j n T n I i U u∆ ≤ − ∃ ≤ > = = =

For y � u,

. (6){ }0 0 0, , 5%TP Y y T n I i U u∆ ≤ − ≤ = = =

The probability on the left hand side of (5) can be calculated by the
following recursive method:

{ }0 0 0, , ,jP Y y j n T n I i U u∆ ≤ − ∃ ≤ > = =
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and can be calculated using the following procedure:  For  j( )0
, ,i

n jh u y

= 0 and n � 2,

( )0 0
1,0 1 ,i ih F u= − −
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For j = 1 and n � 2,
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After obtaining   for m �n we consider the case j �2 :( ),1 ,i
mh u y
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The probability on the left-hand side of equation 6 can be calculated
using the following recursive equation:

{ } ( )0
0 0 0, , ,i

T nP Y y T n I i U u H u y∆ ≤ − ≤ = = =
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1 1 1, , , ,mi i i I
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and  can be calculated recursively by:( )0 ,i
mh u y

,( ) { } ( )0 0 0
1 1,i i ih u y P X y F y= ∆ ≤ − = −
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=
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m =  2, 3,...
Remarks:

1. If equation 6 has a solution, there is 5% probability the portfolio will
lose an amount that is larger than the initial surplus within the next n
periods of time. In this case, the default will occur within the next n
periods of time and the process will stop before time n.  The VaR
can be interpreted as the maximum affordable loss that the company
is willing to face.  If equation 6 does not have a solution but equation
5 does, the VaR is less than the initial surplus.

2. In dealing with market risk, as investments become more liquid, VaR
usually has a smaller time horizon (say one to ten days).  Since credit
is generally viewed over a longer time horizon, the time horizon for
credit risk should be longer.  A one-year time horizon is commonly
used.  However, recent developments and practical experience
suggest that risk managers should pay attention to the impact of
relatively short-term, market-driven factors on credit risk.  On the
other hand, our model can be used to set the margin requirements in
order to ensure that the company will not face unaffordable loss with
a given probability.  This is different from using VaR to manage daily
or weekly earnings from a mark to market perspective.  In this case,
we should use a longer time horizon VaR than usual (for example,
one year or even longer). 

We will now consider the case of infinity time horizon.  The infinity
time horizon model has its own merits in the context of integrated risk
management.  The importance given to it is justified by the different
interpretations of the model, as given in the remarks below.  Similar to
the n-periods case, we can determine the VaR using the following
equations:
For y < u

, (9){ }0 0 0, , , 5%jP Y y j T I i U u∆ ≤ − ∃ = ∞ = = =
and for y �u

. (10){ }0 0 0, , 5%TP Y y T I i U u∆ ≤ − < ∞ = = =
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The probability on the left hand side of (9) can be calculated from the
following integral equations:

{ }0 0 0, , ,jP Y y j T I i U u∆ ≤ − ∃ = ∞ = =
(11)
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and  can be calculated as follows:( )0 ,i
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For j = 0
, (12)( )0

0 0ih −∞ =

. (13)( ) ( ) ( )0 0

00 0
1

k
i ii

i i y
i

h y q h y x dF x
∞

−
=

= +∑ ∫
For j = 1

.( ) ( ) ( )0 0

01 0
1

,
k yi ii

i i u
i

h u y q h u x dF x
−

−
=

= +∑ ∫
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The probability on the left-hand side of (10) can be calculated using the
following coupled Volterra-type integral equation system. 
First, let

 .( ) { }0
0 0 0, , ,i

TH u y P Y y T I i U u= ∆ ≤ − < ∞ = =
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be the distribution of the portfolio change, where y � u  Then
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0 0 0, , ,i
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Therefore, the distribution of the portfolio change satisfies the following
coupled Volterra-type integral equation system: 

 , (14)( ) ( ) ( ) ( )0 0 0

0
1

, ,
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i i ii
i i u

i

H u y F y q H u x y x dF x
∞
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This system contains k unknown functions  and( ) ( )1 , , , ,kH u y H u y�
k equations. The convergence of the above infinity summations and
integrations is obvious. 

Remarks:

1. The main issue that arises when using VaR as a risk management
tool concerns how to calculate (or estimate) the portfolio’s VaR. In
the case of a change in the portfolio value following a normal
distribution, this is a simple matter.  However, as many researchers
have noticed (see for example Duffie and Pan (1997) and Hull and
White (1998)), the portfolio change distributions are fat-tailed.  In
Venkataraman (1997), a mixture of normal distributions was used to



Risk Management 211

model the portfolio change.  It was demonstrated that the mixture
model provides a heavier tail distribution than normal. If we interpret
our model differently, by regarding the Markov chain as a random
process that is used to create a mixture random variable, we can also
claim that we are using the Markov chain to create a heavier tail
random variable. In this case, our model becomes a VaR model that
uses a random mixture model to represent the portfolio change. 

2. In actuarial science literature, there is a lot of work about
distributional results on the severity of ruin (see, for instance, Gerber,
Goovaerts and Kaas (1987) and Gerber and Shiu (1997)).  The idea
underlying the present paper stems from these discussions of the
severity of ruin.

C.  A numerical example

In this subsection, we use an example to illustrate the method employed
in this paper.  This example will be revisited in the next section.  We use
the one-year credit rating transition matrix from “Introduction to
CreditMetrics.”  However, we use the conditional probabilities on the
non-default states rather than the matrix directly.

.9081 .0833 .0068 .0006 .0012 0 0

.0070 .9065 .0779 .0064 .0006 .0014 .0002

.0009 .0227 .9111 .0552 .0074 .0026 .0001

.0002 .0033 .0596 .8709 .0531 .0117 .0012

.0003 .0014 .0068 .0781 .8140 .0893 .0101

0 .0012 .0025 .0045 .0684 .8805 .0429

Q = .

.0027 0 .0028 .0162 .0296 .1401 .8086

 
 
 
 
 
 
 
 
 
   

We assume that the portfolio changes in each time interval are normally
distributed. That is: 

( )2, ,i
i iX N µ σ∆ �

where , , ,  , 2
1 1 4σ = 2

2 1σ = 2
3 4σ = 2

4 9σ = 2
5 16σ = 2

6 25σ =
and  In figures 1 and 2, we use µ1 = 5,  µ2 = 3,  µ3 = 2, µ4 = 1,2

7 36σ =
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 2

FIGURE 1.—VaR vs. confidence level (y < u).

µ5 = 0, µ6 = –1, and µ7 = –2 and in figures 3 and 4, we use µ1 = 20, µ2

= 15, µ3 = 10, µ4 = 5, µ5 = 3, µ6 = 0, and µ7 = –2.  All the numerical
results seem to be plausible.

Figure 1 gives the relationship between the probabilities on the left-
hand side of equation 5 and the values of y for u = 5 and n = 8.  Here,
we fix u = 5.  The initial surplus should affect the rating at time 0 (the
same remark applies to all the examples below).  Note that this figure
does not indicate a clear, regular relation among the different ratings
when y � 0. This is because when the rating is high, the probability of a
portfolio loss in excess of y will be low, and when the rating is low, the
probability of a portfolio loss in  excess of y will be high but the
probability of a portfolio loss being less than u will be low. So the overall
effect of the rating on the probabilities on the left-hand side of equation 5
is rather complex. When –y becomes larger, the probabilities on the left-
hand side of equation 5 approach the non-default probabilities.  

Figure 2 gives the relationship between the probabilities on the left-
hand side of equation 6 and the values of y for u = 5.  It is clear that, if
the rating is lower, the default probability will be higher.  When the initial
rating equals 5, 6, or 7, equation 6 has a solution.  For initial ratings
equaling 1 to 4, the VaR can be found from figure 1.

Figures 3 and  4 give the solutions of the Volterra integral equation
system 12 for H as a function of u when y = 2 and y =10, respectively.
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FIGURE 2.—VaR vs. confidence level (y > u).

FIGURE 3.—Solution of (12) when y = 2.

FIGURE 4.—Solution of (12) when y = 10.
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These figures indicate the effect of the initial surplus on the VaR and
default probabilities. 

III. Default Time and Default Probabilities

As mentioned in the introduction, default has always been the main
concern of most banks.  The standard method of estimating default
probabilities involves using historical data.  This was the case, for
example, with the JLT model or J. P. Morgan’s CreditMetrics.  In this
section, we use the model and some of the results in Yang (2000) to
discuss the default risk and default time.

A. Default probability

In the literature, the state space of the Markov chain includes the default
state (see JLT (1997)).  In practice, default is the state of most concern.
We shall study the default risk using the estimated transaction probability
matrix for credit ratings, but without including the default state.  The
credit rating model here is the same as in Section II. 

The probability of default before or at time n is defined as

( ) { }0
0 0 0, ,i

n u P T n I i U uψ = ≤ = =

and the ultimate default probability as

( ) { }0
0 0 0, ,i

n u P T I i U uψ = < ∞ = =

Let 

, (15)( ) ( )0 01i i
n nu uϕ ψ= −

be the non-default probability.  From Yang (2000), we have the
following result:

Lemma 1.   satisfies the following recursive equations:( )0i
n uϕ
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, (16)( ) ( ) ( )0 0 0
1 1i i iu F u F uϕ = − = − −

, (17)( ) ( ) ( )0 0

0 1
1

k
i ii
n i i nu

i

u q u y dF yϕ ϕ
∞

−− −
=

= +∑ ∫

n = 2, 3,..., and , i0 = 1, 2,..., k satisfy the following coupled( )0i uψ
Volterra-type integral equation system:

. (18)( ) ( ) ( ) ( )0 0 0

0
1

k
i i ii

i i u
i

u F u q u y dF yψ ψ
∞

− −
=

= − + +∑ ∫

The proof of Lemma 1 is based on the recursive calculation that was
proposed in De Vylder and Goovaerts (1988). 

Example.  We consider the example in Section II again.  In table 1,
we use µ1 = 5, µ2 = 3, µ3 = 2, µ4 = 1, µ5 = 0, µ6 = –1, and µ7 = –2 .
Table 1 gives the non-default probabilities calculated from the recursive
formulas 14 and 15 for u = 5.

Figure 5 gives the solution of the integral equation system 16. The
values of the parameters used here are the same as in figures 3 and 4.

B. Default time

We now discuss the default time distribution.  Let

( ) { }0
0 0 0, .i

nG u P T n I i U u= = = =

Using the recursive method, we can obtain the default time distribution
as follows:

Lemma 2. The distribution of the default time can be calculated
using the following recursive equations:

( ) ( )0 0
1
i iG u F u= −
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FIGURE 5.—Solution of (16)

TABLE 1. Non-default Probabilities

A.  1 � n � 4

n      1      2      3      4
i0 = 1 1.00000 0.999993 0.999952 0.999882
i0 = 2 1.00000 0.999836 0.999475 0.998976
i0 = 3 0.999775 0.998005 0.995219 0.992010
i0 = 4 0.977373 0.941426 0.911119 0.886701
i0 = 5 0.894496 0.784091 0.704873 0.646862
i0 = 6 0.788239 0.624959 0.521345 0.450873
i0 = 7 0.691513 0.509285 0.407070 0.342946

B.  5 � n � 8

n      5      6      7      8
i0 = 1 0.999789 0.999677 0.999548 0.999400
i0 = 2 0.998377 0.997703 0.996965 0.996171
i0 = 3 0.988622 0.985161 0.981674 0.978181
i0 = 4 0.866576 0.849505 0.834661 0.821490
i0 = 5 0.602594 0.567606 0.539171 0.515533
i0 = 6 0.399993 0.361595 0.331627 0.307606
i0 = 7 0.299330 0.267885 0.244199 0.225712
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( ) ( ) ( )0 0

0 1
1

.
k

i ii
n i i nu

i

G u q G u y dF y
∞

−− −
=

= +∑ ∫

The notion of default time distribution is useful in credit derivatives.
Suppose a defaultable contingent claim pays  >0 (random) at time S if
the default does not occur before time S.  If the default occurs before
time S, the payment will be either 0 or a reduced amount.  The
calculation of the price of this contingent claim involves the distribution
of the default time.  Hence, the calculation of a default time distribution
is part of the calculation of the default derivative price.

Example.  We continue the example in Section II. The following
table (table 2) provide some values of the default time distribution when
the initial surplus u = 5 and the rest of the parameters are the same as
in table 1.

TABLE 2. Default Time Distribution 

A.  1 � n � 4

n           1          2           3          4
i0 = 1 0.486887E-197 0.117773E-06 0.482978E-05 0.116431E-04
i0 = 2 0.619335E-38 0.204812E-04 0.668437E-04 0.985179E-04
i0 = 3 0.990179E-09 0.934214E-04 0.276415E-03 0.408816E-03
i0 = 4 0.123062E-03 0.184695E-02 0.250688E-02 0.262296E-02
i0 = 5 0.621508E-02 0.160854E-01 0.132180E-01 0.103645E-01
i0 = 6 0.359499E-01 0.416151E-01 0.264394E-01 0.176693E-01
i0 = 7 0.912453E-01 0.643123E-01 0.338848E-01 0.199415E-01

B.  5 � n � 8

n          5         6           7          8
i0 = 1 0.177801E-04 0.235274E-04 0.289968E-04 0.342840E-04
i0 = 2 0.122581E-03 0.143453E-03 0.162791E-03 0.181181E-03
i0 = 3 0.504224E-03 0.576666E-03 0.633956E-03 0.680414E-03
i0 = 4 0.258784E-02 0.250603E-02 0.240961E-02 0.230989E-02
i0 = 5 0.829401E-02 0.679455E-02 0.567713E-02 0.482015E-02
i0 = 6 0.125328E-01 0.930653E-02 0.715621E-02 0.565477E-02
i0 = 7 0.128193E-01 0.879717E-02 0.634642E-02 0.476295E-02
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IV. Concluding Remarks

This paper has proposed an integrated risk management method.  The
model described here can capture the market risk, credit rating change,
and default risk.  Using some recursive equations and coupled Volterra
integral equation systems, a procedure for calculating the VaR of the
portfolio has been provided.  However, this paper has only focused on
ideas and theoretical insight and has not sought to apply the method to
practical problems.

Limitations are a fact of life. It is very difficult, maybe even
impossible, to find a perfect risk management methodology.  We are not
claiming that the method proposed in this paper is superior to those in the
literature.  Indeed, there are some disadvantages to this model.  The
model, as it stands, is rather simple.  We assume that the rating state
depends on the initial surplus, but we cannot assume, for mathematical
reasons, that the Markov chain will depend on the surplus process.  The
numerical calculations are complex and computationally intensive. With
today’s high level of computing power, hopefully this problem is not so
serious.  There are many problems that need to be considered further.
For general distributions, the stability of numerical solutions of the
coupled Volterra integral equation system needs to be investigated
carefully.  Up to now, we have only considered the discrete time model.
The ideas in this paper can be used for other risk models as well.  We
shall address these problems in future research.
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