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This article presents a simple methodology for computing Value at Risk
(VaR) for a portfolio of financia instruments that is sensitive to market risk,
rating change, and default risk. An integrated model for market and credit risks
isdeveloped. TheJarrow, Lando and Turnbull model (the Markov chain model)
is used to represent the dynamics of the credit rating. Procedures for
calculating VaR are presented. Numerical illustration results are included (JEL
G10, D81).
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|. Introduction

Broadly speaking, risk management includes the management of both
financial and non-financial risk. Financial risk includesmarket risk and
credit risk whereasnon-financial risk includesoperational risk, regulatory
risk, legal risk, and event risk. In this paper, we shall be focusing on
financial risk.

Alfred Steinherr (1988) stressed the significance of modern risk
management by callingit “ oneof themost important innovationsof the
20th Century.”

Investment banks and financial institutions around the world seek
various methods and tools to manage the risks they face. Dueto the
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recent rapid development of the derivative market, thetasksinvolvedin
risk management have become even morechallengingthanbefore. This
has accel erated the devel opment of more advanced techniques of risk
management. Traditionally, volatility wastherisk measurecommonly
used by the finance community, but recently Value at Risk (VaR) has
also become a very popular measure of risk. VaR is an attempt to
summarize the total risk of aportfolio with asingle number that isthe
statistical estimation of aportfolioloss. TheVaRistheamount, witha
given(small) probability, that we may |ose over agiven (typically short)
holding period. Alongwiththisprobability thereisalsoapossibility that
we may lose more. Both Embrechts (2000) and J. P. Morgan's “ Risk
Metrics™ - Technical Document” give anintroductiontoVaR whilea
useful survey is presented by Duffie and Pan (1997). Credit risk has
perhaps become the key risk management challenge since the late
1990s. J. P. Morgan's “Introduction to CreditMetrics’ provides an
overview of thissubject. Ong (1999) providesacoherent framework for
thinking about and modeling bank credit risk. In 1997, Jarrow, Lando and
Turnbull (JLT) proposed aMarkov chain model for valuing risky debts
that explicitly incorporate afirm's credit rating as an indicator of the
likelihood of default. Kijimaand Komoribayushi (1998) studied this
model further. Morerecently, Arvanitis, Gregory and Laurent (1999)
have built models for credit spreads and used a Markov chain to
represent the credit rating dynamics.

Of course, in most markets nowadays, both market and credit risks
have been measured and quantified using agreed methodologies.
However, risk managers are increasingly seeking quantified and
integrated risk management tools that can capture market exposure,
rating change, and default risk. Recent developments in integrating
market risk and credit risk analysis were presented by Huang (2000).
Thispaper presentsasimplemode for integrated risk management. We
assume that firms face both market and credit risks. The credit risk
ratingsaremodelled by usingtheJLT (1997) Markov chainmodel (see
alsoKijimaand Komoribayashi (1998)). Itiswell knownthat VaR has
been used successfully in measuring and managing market risk. Dueto
itsskewed distribution, modelling credit risk isneither analytically nor
practically easy. Inthefirst part of thispaper, we present anintegrated
risk assessment within a VaR context and discuss VaR calculation
procedures. Theanalytical toolsinthispaper aresimilar tothosein'Y ang
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(2000). InYang (2000), an insurance risk model with credit risk was
considered. Some commonly discussed problemsinrisk theory, suchas
ruin probability, ruin time distribution, severity of ruin, and joint
distribution of surplus before and after ruin, were addressed. In the
second part of this paper, we use some of theresultsfrom Y ang (2000)
in the context of credit risk rather than ruin theory. Some numerical
results illustrating how to analyze default risk are included.

This paper proceeds as follows. Section |1 presents the problem
formulation andthe proceduresusedfor VaR calculation. Anillustrative
exampleisalsoincluded. Section I11 discusses the distributions of the
default probabilitiesand thetimeof default. Someillustrative numerical
resultsareincluded aswell. Thefinal section containssome concluding
remarks.

1. An Integrated Method for Managing Market and Credit
Risks

In this paper, we consider a firm that could be either a financial
corporation or an insurance company. At the beginning of each time
interval, arating agency will provideacredit rating to assessthefirm's
abilities to meet its debt obligations (to pay possible claims in an
insurance company case). Therating of thefirmisbased onitsfinancia
situation and initial surplus. The firm also faces exposure to market-
based financial risk. Wewill propose an integrated method to measure
the risk faced by the firm.

A. Credit and Market Risk Models

This paper uses aMarkov chain model for the dynamics of the firm’s
creditratings(seeJLT (1997)). Theonly differencehereto JLT (1997)
isthat the default stateis not included in the state space of the Markov
chain.

Let |, beatime-homogeneous Markov chainwith state spaceN={ 1,
2,..., K} where state 1 represents the highest credit class and state k
represents the lowest. According to Moody'’s ratings, state 1 can be
thought of as Aaa and state k as Caa, whereas according to S&P’s
ratings, state 1 can be thought of as AAA and state k as CCC. In our
formulation, we are not including the default state in the transition
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matrix. Let
g =P{l. =il =}, i.jON, =012, Q)

be the one-step transition probabilities. The transition matrix of the
Markov chain I, can then be written as

Boﬂl Gh, Ol O B
0% % - Oxa %
=0: : : 0O, 2
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k-1 Gk Okaka G
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Let ubetheinitial surplusof thefirmand let AX! betheportfolio

changein the n timeinterval when the firm’s credit rating in the time
interval nisof classi. The surplus of the firm at time n can then be
written as

U,=u+Yy AX!™ =u+A4Y,, (3)

m=.

where we assume that ijn, i=1,...,k, m=12,... are independent
random variables. If U,<0 we say that default occurred at time n.
Wewill assumethat for any fixedi =1,..., k, AX. ,m=12,..., are
identically distributedand AX*,...,AX" areindependent but may have
different distributions. For example, we may assume that AX* only

takes positive values, that AX* may take negative values with high
probabilities, and that theprocesswill stop if default occurs. Themarket
risk focusesonthefirm’'sinvestmentsin themarket. This paper models
the market risk by assuming that the portfolio’s change in each time
interval is random. For example, if we assume that the investment
return follows a normal distribution, we can also assume that the
portfolio changeineachinterval followsanormal distribution. Although
thefirminvestmentsin the market do not depend onthecredit rating, the
firm'sportfolio changein each timeinterval dependson both thefirm’s
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investmentsinthe market and therating of thecredit. Therefore, inour
model, themarket riskisbuiltinthedistributionof AX| . Fromnow on,

the distribution of AX' is denoted by F/(x).
Remarks:

1. Theassumptionthat I,isatime-homogeneousMarkov chainisonly
madeto simplify notations. All theanalysesinthispaper work, even
if 1, is anon-homogeneous Markov chain.

2. Theprobability transition matrix, Q, can beestimated using historical
data. We may aso be able to use someresults currently available
in the literature. For example, from J. P. Morgan's home page
(http: //www.riskmetrics.com).

3. Theassumptionthat forany fixed i 0{1,...,Kt A X;, = 12,...,is
i.i.d. can be relaxed. If we now assume that the business will
expand andthat thegrowthrate over eachtimeinterval isaconstant,

the following model can be used for the dynamics of the surplus
process:

U, =u+Y A (L), @

m=.

where r is the business growth rate. With all other assumptions
remaining the sameasbefore, theresults presented in this paper can be
extendedto thismode without difficulty. Mathematically, model (4) is
the same as that in Yang (1999) where an insurance risk model with
interest incomes was considered.

B. VaR approach

Suppose we are at time 0 and there is a 5% probability that we may
incur acertain amount of loss or more over the next time period, say of
oneday. Thisamount of portfoliolossiswhat weare concerned aboui.
We call it the 95% VaR. It can aso be interpreted as a minimum
marginrequirement. Theone-day VaR at a5% confidencelevel canbe
defined using thefollowing equation (the confidence percentage can be
changed to any other value):
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VaR,, (aY,)=-inf{yOR|F5 (v} 94,

where FAi"y;“ isthe conditional probability distributionof AY, knowing

that 1,=i, and U,=u. Let T=inf{n; U, < 0}. The stoppingtime, T, is
called the default time. In practice, we may also becomeinterested in
theVaR for more than oneday, say for ndays. Then-day VaR can be
defined in a similar way to the one-day VaR. However, since the
default may occur inlessthan ndays, weneed to dividethe probleminto
two cases. Thismotivatesusto consider thefollowing problems: Fory
<u,

P{AY, <-y,0j< n,T> n|l,= ip,U,= 4 = 5%. (5)
Fory > u,
P{AY; <-y,T <nll, =i,,U, =t} =5%. (6)

The probability on the left hand side of (5) can be calculated by the
following recursive method:

P{AY, < -y, 0j< n,T> n[l,= i,,U,= ¢
(7

:ghmu,y),

where
hrlmoJ (U,y): P{AxliO >-y,..., U <AX1i° .
+AX1'1—1 s—y,...,Axlio oo X >—u},

and h?; (u, y) can be calculated using thefollowing procedure: For |
=0andn > 2,
h% =1-F" (_u)’



Risk Management 207
. k 00 . .
hy, (U) = Z qoij_u hi-10 (u + X) dF" (X)
Forj=1andn> 2,

ho (u,y)=P{-u<aXp <} =F" () -F* (),

(090 3 0, (44 X)0F" ().

After obtaining h;,, (u,y) for m <nwe consider the casej >2:

(9= 3 0, Moy (0 y +X)F" ().

The probability on the left-hand side of equation 6 can be calculated
using the following recursive equation:

P{AY, <-y. T <n|l, =i,U, =4 =Hp (uy)
(8)

=;mmw,

where

he (U, y) = P{AXp > —u,..., X+ + X7 >,
AXp 4o+ X < =y},
and h? (u, y) can be calculated recursively by:

he (u,y)=P{axX;y < -y =F* (-y),
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; (u,y)= iqioij:_h‘m-l (u+xy +x)dr* (x),

m= 2, 3,...
Remarks:

1. If equation 6 hasasolution, thereis5% probability theportfoliowill
losean amount that islarger thantheinitial surpluswithinthenextn
periodsof time. Inthiscase, the default will occur withinthenext n
periods of time and the process will stop beforetimen. TheVaR
can beinterpreted asthe maximum aff ordabl el ossthat the company
iswillingtoface. If equation 6 doesnot haveasol ution but equation
5 does, the VaR is less than the initial surplus.

2. Indedingwithmarket risk, asinvestmentsbecomemoreliquid, VaR
usually hasasmaller timehorizon (say onetotendays). Sincecredit
isgenerally viewed over alonger timehorizon, thetime horizonfor
credit risk should belonger. A one-year time horizon iscommonly
used. However, recent developments and practical experience
suggest that risk managers should pay attention to the impact of
relatively short-term, market-driven factors on credit risk. Onthe
other hand, our model can be used to set themarginrequirementsin
order to ensurethat the company will not face unaffordablelosswith
agivenprobability. Thisisdifferent fromusingVaR to managedaily
or weekly earningsfrom amark to market perspective. Inthiscase,
we should use alonger time horizon VaR than usual (for example,
one year or even longer).

Wewill now consider thecaseof infinity timehorizon. Theinfinity
time horizon model hasits own meritsin the context of integrated risk
management. The importance given to it is justified by the different
interpretations of themodel, asgivenin theremarksbelow. Similar to
the n-periods case, we can determine the VaR using the following
eguations:

Fory<u

P{AY, <-y,0j,T= o |I,= ig,U,= } = 5%, 9)
and fory >u
P{AY; <-y,T <wll, =iy,U, =t} =5%. (10)
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The probability on the left hand side of (9) can be calculated from the
following integral equations:

P{AY, < -y, 0}, T=w |I= i,U,= ¢

(11)
=2 ().
=
Here,
he (u,y):P{AXlio > =y, U <X e +A>(J!”1 <.,
AXP 4o+ AX 0 >, ),
and h' (u,y) can be calculated as follows:
Forj=0
hy (=) =0, (12)
R (v)=3 s [ W (y +x)dr" (x). (13)
Forj=1

e (9)= 3 o, (0 +)de" ().

After obtaining h° (u, y), we consider the casej > 2:

mqmw:qujm4@+xy+@mw@y

Theprobability ontheleft-hand side of (10) can becalculated usingthe
following coupled Volterra-type integral equation system.
First, let

H (u,y)=P{AY, <-y,T <|l, =i,,U, =1} .
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be the distribution of the portfolio change, wherey > u Then

H (u,y)=P{AY, <-y,T <w|l, =ip,U, =4}
:iP{AYt <-y,T =n|l, =i,,U, =4}
:iP{AXliO >—U,A)(li0 +AX;1 >y, A)(lio +...

+AX,7 > U, AKP +e + X < —y}

=mew.

Therefore, thedistribution of the portfolio changesatisfiesthefollowing
coupled Volterra-type integral equation system:

H" (u,y)=F" (-y) +Zq [ H (uxy +x)dF® (x),(14)

i,=12,....k.

Thissystem containsk unknownfunctions H* (u, y),...,H* (u, y) and

k equations. The convergence of the above infinity summations and
integrationsis obvious.

Remarks:

1. Themainissuethat arises when using VaR as arisk management
tool concerns how to calculate (or estimate) the portfoliosVaR. In
the case of a change in the portfolio value following a normal
distribution, thisisasimplematter. However, asmany researchers
have noticed (see for example Duffie and Pan (1997) and Hull and
White (1998)), the portfolio change distributions are fat-tailed. In
Venkataraman (1997), amixtureof normal distributionswasusedto
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model the portfolio change. It was demonstrated that the mixture
model providesaheavier tail distributionthannormal. If weinterpret
our model differently, by regarding the Markov chain asarandom
processthat isused to createamixturerandomvariable, wecanalso
claim that we are using the Markov chain to create a heavier tail
random variable. Inthiscase, our model becomesaV aR model that
uses a random mixture model to represent the portfolio change.

2. In actuarial science literature, there is a lot of work about
distributional resultsontheseverity of ruin (see, for instance, Gerber,
Goovaertsand Kaas (1987) and Gerber and Shiu (1997)). Theidea
underlying the present paper stems from these discussions of the
severity of ruin.

C. Anumerical example

Inthissubsection, weuse an exampletoillustratethe method employed
inthispaper. Thisexamplewill berevisitedinthenext section. Weuse
the one-year credit rating transition matrix from “Introduction to
CreditMetrics.” However, we usethe conditional probabilities onthe
non-default states rather than the matrix directly.

[J9081 .0833 .0068 .0006 .0012 O 0 O
%0070 9065 .0779 .0064 .0006 .0014 .0002%
(o009 .0227 .9111 .0552 .0074 .0026 .0001
Q= 50002 .0033 .0596 .8709 .0531 .0117 .001Z.
%0003 .0014 .0068 .0781 .8140 .0893 .0101%
.0012 .0025 .0045 .0684 .8805 .04297

1o
50027 0 .0028 .0162 .0296 .1401 .80865

Weassumethat the portfolio changesin each timeinterval arenormally
distributed. That is:

DX~ N (4, 0?),

where 02 =14,0} =1,0}=4,0;=9 02=16, 0.=25
and o? =36 Infiguresland 2, weusep, =5, P,=3, U3=2, U, =1,
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Ficure 1.—VaR vs. confidence level (y < u).

Ms =0, g =-1, and 4, =—-2 and in figures 3 and 4, we use |, = 20, |,
=15 =10, 4, =5, s =3, Yg = 0, and , = —2. All the numerical
results seem to be plausible.

Figure 1 givestherelationship betweenthe probabilitiesontheleft-
hand side of equation 5 and thevalues of y for u=5and n=8. Here,
wefix u=5. Theinitial surplus should affect therating at time O (the
sameremark appliesto all the examples below). Note that thisfigure
does not indicate a clear, regular relation among the different ratings
wheny > 0. Thisisbecausewhentheratingishigh, the probability of a
portfoliolossinexcessof ywill below, and whentheratingislow, the
probability of a portfolio loss in excess of y will be high but the
probability of aportfoliolossbeinglessthan uwill below. Sotheoverall
effect of therating ontheprobabilitieson theleft-hand side of equation 5
israther complex. When -y becomeslarger, the probabilitiesontheleft-
hand side of equation 5 approach the non-default probabilities.

Figure2 givestherelationship between the probabilitiesonthel eft-
hand side of equation 6 and thevaluesof yfor u="5. Itisclear that, if
theratingislower, thedefault probability will behigher. Whentheinitial
rating equals 5, 6, or 7, equation 6 has a solution. For initia ratings
equaling 1 to 4, the VaR can be found from figure 1.

Figures3and 4 givethe solutionsof the Volterraintegral equation
system 12 for H asafunction of uwheny =2 and y =10, respectively.
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Ficure 2—VaR vs. confidence level (y > u).
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Ficure 3.—Solution of (12) wheny = 2.
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Ficure 4.—Solution of (12) wheny = 10.
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Thesefiguresindicate the effect of theinitial surplusontheVaR and
default probabilities.

[11. Default Timeand Default Probabilities

As mentioned in the introduction, default has always been the main
concern of most banks. The standard method of estimating default
probabilities involves using historical data. This was the case, for
example, with the JLT model or J. P. Morgan's CreditMetrics. Inthis
section, we use the model and some of the resultsin Y ang (2000) to
discuss the default risk and default time.

A. Default probability

Intheliterature, the state space of theMarkov chainincludesthe default
state(seeJLT (1997)). Inpractice, default isthe state of most concern.
Weshall study the default risk using the estimated transaction probability
matrix for credit ratings, but without including the default state. The

credit rating model here isthe same asin Section 1.
The probability of default before or at time n is defined as

wp (u)=P{T <n|1, =i,,U, =4,
and the ultimate default probability as

wp (u)=P{T <oo|l, =ip,U, =} ,
Let

go (u)=1-p (u), (15)

be the non-default probability. From Yang (2000), we have the
following result:

Lemmal. ¢¢ (u) satisfiesthe following recursive equations:
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2 (u)=F"(-u)=1-F"(-u), (16)

0=y [ o), @

n=23,..,and ¢ (u),i, =1, 2,..., k satisfy the following coupled
Volterra-type integral equation system:

g (u)=F" (-u) +2qioiﬁ_w‘ (u+y)dFe(y).  (8)

The proof of Lemma 1 is based on the recursive calculation that was
proposed in De Vylder and Goovaerts (1988).

Example. We consider theexamplein Section |l again. Intablel,
weusel; =5 M =3, Hg =2, My =1, Ps = 0, g = -1, and p, = 2.
Table1 givesthenon-default probabilities cal culated from therecursive
formulas 14 and 15 for u = 5.

Figure 5 givesthe solution of theintegral equation system 16. The
values of the parameters used here are the same asin figures 3 and 4.

B. Default time

We now discuss the default time distribution. Let
Gr (u)=P{T =nll, =i,,U, =4 .

Usingtherecursive method, we can obtai nthe default time distribution
asfollows:

Lemma 2. The distribution of the default time can be calculated
using the following recursive equations:

G (u)=F" (-u)
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TABLE 1. Non-default Probabilities

A.1l<n<4

n 1 2 3 4
i,=1 1.00000 0.999993 0.999952 0.999882
i,=2 1.00000 0.999836 0.999475 0.998976
i,=3 0.999775 0.998005 0.995219 0.992010
i,=4 0.977373 0.941426 0.911119 0.886701
i,=5 0.894496 0.784091 0.704873 0.646862
i,=6 0.788239 0.624959 0.521345 0.450873
= 0.691513 0.509285 0.407070 0.342946
B.5<n<8

n 5 6 7 8
ip=1 0.999789 0.999677 0.999548 0.999400
i,=2 0.998377 0.997703 0.996965 0.996171
i,=3 0.988622 0.985161 0.981674 0.978181
i,=4 0.866576 0.849505 0.834661 0.821490
i,=5 0.602594 0.567606 0.539171 0.515533
i,=6 0.399993 0.361595 0.331627 0.307606
i,=7 0.299330 0.267885 0.244199 0.225712

Ficure 5.—Solution of (16)
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TABLE 2. Default Time Distribution

A.1l<n<4

n 1 2 3 4

i,=1 0.486887E-197 0.117773E-06 0.482978E-05 0.116431E-04
i,=2 0.619335E-38 0.204812E-04 0.668437E-04 0.985179E-04
i,=3 0.990179E-09 0.934214E-04 0.276415E-03 0.408816E-03
i,=4 0.123062E-03 0.184695E-02 0.250688E-02 0.262296E-02
i,=5 0.621508E-02 0.160854E-01 0.132180E-01 0.103645E-01
i,=6 0.359499E-01 0.416151E-01 0.264394E-01 0.176693E-01
ip= 0.912453E-01 0.643123E-01 0.338848E-01 0.199415E-01
B.5<n<8

n 5 6 7 8

i,=1 0.177801E-04 0.235274E-04 0.289968E-04 0.342840E-04
i,=2 0.122581E-03 0.143453E-03 0.162791E-03 0.181181E-03
i,=3 0.504224E-03 0.576666E-03 0.633956E-03 0.680414E-03
i,=4 0.258784E-02 0.250603E-02 0.240961E-02 0.230989E-02
i,=5 0.829401E-02 0.679455E-02 0.567713E-02 0.482015E-02
i,=6 0.125328E-01 0.930653E-02 0.715621E-02 0.565477E-02
i,=7 0.128193E-01 0.879717E-02 0.634642E-02 0.476295E-02

G (0)=3 A, Gha(u+y)aF" (v)

The notion of default time distribution is useful in credit derivatives.
Suppose adefaultable contingent claim pays¢ >0 (random) at time Sif
the default does not occur beforetime S, If the default occurs before
time S, the payment will be either O or a reduced amount. The
calculation of thepriceof thiscontingent claiminvolvesthedistribution
of thedefault time. Hence, thecal culation of adefault timedistribution
is part of the calculation of the default derivative price.

Example. We continue the example in Section 1. The following
table (table 2) provide someval uesof thedefault timedistribution when
theinitial surplusu =5 and the rest of the parameters are the same as
intable 1.
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V. Concluding Remarks

This paper has proposed an integrated risk management method. The
model described here can capturethe market risk, credit rating change,
anddefault risk. Using somerecursive equationsand coupled Volterra
integral equation systems, a procedure for calculating the VaR of the
portfolio has been provided. However, this paper has only focused on
ideas and theoretical insight and has not sought to apply the method to
practical problems.

Limitations are a fact of life. It is very difficult, maybe even
impossible, tofind aperfect risk management methodology. Wearenot
claimingthat the method proposedinthispaper issuperior tothoseinthe
literature. Indeed, there are some disadvantages to this model. The
model, as it stands, is rather simple. We assume that the rating state
dependsontheinitial surplus, but we cannot assume, for mathematical
reasons, that the M arkov chainwill depend onthesurplusprocess. The
numerical calculationsare complex and computationally intensive. With
today’shighlevel of computing power, hopefully thisproblemisnot so
serious. There are many problems that need to be considered further.
For general distributions, the stability of numerical solutions of the
coupled Volterra integral equation system needs to be investigated
carefully. Uptonow, wehaveonly considered thediscretetimemodel.
Theideasin this paper can be used for other risk modelsaswell. We
shall address these problems in future research.
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