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|. Introduction

The prescriptionsof modernfinancial risk management hingecritically
on the associated characterization of the distribution of future returns
[cf., Diebold, Gunther, and Tay (1998), and Diebold, Hahn, and Tay
(1999)]. Because volatility persistence renders speculative returns
temporally dependent [e.g., Bollerslev, Chou, and Kroner (1992)], itis
the conditional return distribution, not the unconditional distribution,
that isof relevancefor risk management. Thisisespecidly trueinhigh-
frequency situations, such as monitoring and managing the risk
associated with the day-to-day operations of a trading desk, where
volatility clustering is awell recognized fact of life.

Unconditional distributions of exchange rate returns are routinely
found to be symmetric but highly leptokurtic. Standardized daily or
weekly returnsfrom ARCH and rel ated stochastic volatility model sal so
appear symmetric but leptokurtic; that is, the distributionsare not only
unconditionally, but a so conditionally leptokurtic, although lesssothan
unconditionally. Henceasizableliteratureexplicitly attemptsto model
thefat-tailed conditional distributions, including, for example, Bollerdev
(1987), Engle and Gonzalez-Rivera (1991), and Hansen (1994).

Let us make the discussion more precise. Assuming that return
dynamics operate only through the conditional variance, a standard
decomposition of thereturninnovationisr,= o, & whereg, referstothe

time-t conditional standarddeviation, and £ ~ (0,1) . Thus, given o,

it would be straightforward to back out & and assessits distributional
properties. Of course, o, is not directly observable. When using an
estimate of o, thedistributionsof theresulting standardized returnsare
typically found to be fat-tailed, or leptokurtic.t

The main focus of the present paper is similar — we are also
concerned with the shape of the distributions of standardized returns.
However, there is an important distinction: our volatility measureis
fundamentally different from the ARCH and related estimators that
havefeatured prominently in theliterature, and hence our estimates of
the conditional distribution differ aswell. Inparticular, werely on so-

1. This result has motivated the practical use of various “fudge-factors’ relative to the
standard normal quantiles in the construction of Value-at-Risk type statistics.
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called realized volatility measures constructed from high-frequency
intraday returns, as previously analyzed by Schwert (1990), Hsieh
(1991), Andersen and Bollerslev (1998), and Andersen, Bollerslev,
Diebold and Labys (2001a), Andersen, Bollerslev, Diebold and Ebens
(2001), among others.

We proceed to study ten years of high-frequency returns for the
Deutschemark - U.S. Dollar (DM/$) and Japanese Yen - U.S. Dollar
(Yen/$) exchange rates. In order to establish aproper benchmark, in
section 2, we provide a characterization of thedistribution of thedaily
unstandardized returns. In section 3, we characterizethedistribution of
the daily returns when standardized by univariate realized volatility
measures, and, in section 4, we characterize the distribution of the
returns when standardized by realized volatilities in a multivariate
fashion. For comparison, in section 5, we examine the distribution of
returns standardized by GARCH(1,1) volatilities, along with the
distribution of returnsstandardized by one-day-ahead volatility forecasts
fromasimple ARMA(1,1) modd fit directly torealized volatility. We
conclude in section 6.

1. Unstandardized Returns

Our empirical analysisisbased on 10-year timeseriesof 5-minute DM/$
and Y en/$ returnsfrom December 1, 1986 through December 1, 1996.
The datawerekindly supplied by Olsen & Associates. After omitting
weekend and other holiday non-trading periods, asdetailedin Andersen,
Bollerdev, Diebold, and Labys (2001a), we are left with a total of
T=2,445 completedays, each of which consistsof 288 5-minutereturns.
From these we proceed to construct time series of continuously
compounded 30-minute and daily returns.

We begin our analysis with a summary of the distributionsfor the
unstandardized, or raw, daily DM/$ and Y en/$ returns. The results
appear in table 1 and figures 1 through 3. Consistent with the extant
literature, the s-shaped quantile-quantile plots for the two marginal
distributionsin the top panel of figure 1 indicate that both returns are
symmetric but fat-tailed relativeto thenormal distribution. Thestatistics
reportedinthefirst panel of table1 confirmthat impression: thesample
skewness is near O for both series, but the sample kurtoses are well
above the normal value of 3.
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Turning to the joint distribution, not surprisingly, the two rates show
considerabl e dependence, with asample correlation of .66. Thishigh
degree of dependenceisfurther underscored by the bivariate scatterpl ot
inthetop panel of figure2, which alsoclearlyillustratesthemarginal fat
tailsintermsof themany outliersrelativeto thetight ellipsoid expected
under bivariate normality.

Finally, weconsider theconditional distribution of theunstandardized
returns, assummarized by the autocorrel ationsfor each of thetwodaily
squared return series and the cross product of the two rates. The
relevant correlograms to a displacement of 100 days, along with the
Bartlett standard errors, appear in the top panel of figure 3. Again,
directly inlinewith existing evidenceintheliterature, theresultsindicate
highly persistent conditional variance and covariance dynamics.

[11. Univariate Standardization by Realized Volatility

In the absence of any short-run predictability in the mean, whichisa
good approximation for the two exchange rates analyzed here, the
univariate return series are naturally decomposed as r= g, &, where

& ~(0,1),and g, isthetime-t conditional standard deviation. On
rearranging this decomposition, we obtain the o-standardized return,

r

— 't
g =—"
a’(

on whose distribution and dependence structure we now focus.

Inpractice, of course, ¢, isunknown and must be estimated.? Many
volatility models have been proposed in the literature. However, as
formally shown by Andersen, Bollerslev, Diebold and Labys(2001a), in
a continuous time setting the ex post volatility over a day may be
estimated to any desired degree of accuracy by summing sufficiently
high-frequency returnswithintheday. Followingthisanalysisweshall
refer to the corresponding measures as realized volatilities.

Inorder todefineformally our daily realized volatilities, let thetwo
series of 30-minute DM/$ and Y en/$ returns be denoted by AlogD g,

2. In an abuse of notation, we will continue to use o; to denote an estimate of the
volatility, as the meaning will be clear from context.
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and AlogY e, , respectively, wheret = 1/48, 2/48, ..., 2,445, and “ 48"
refersto the 48 30-minute intervalsin the 24-hour trading day. From
these 48x2,445 = 117,360 30-minute returns, we estimate the daily
variances by simply summing the 48 squared returns within each day.
That is,

2
Jét (RV)E Z j=1...,48 (AIOg D(48)’t'1+1/48) ’

2
oq (RV)E Z j=1,...,48 (AIOgY(43)vt—l+i/48) ’

wheret=1,2,..., 2,445, and RV stands for “realized volatility.” Our
choiceof 30-minutereturnsismoativated by examination of thevolatility
signatureplot of Andersen, Bollerdev, Diebold and Labys(2000), which
recordsaveragerealized volatility asafunction of underlying sampling
frequency. Inthe present application, averageDM/$and Y en/$realized
volatility remain stable asunderlying sampling frequency increasesupto
approximately 30-minutereturns, asshowninfigure4.®> Thissuggests
that in the present context 30-minute sampling provides a reasonable
bal ance between the salient market microstructurefrictionsat thevery
highest sampling frequencies, on the one hand, and the accuracy of the
continuous record asymptotics underlying the estimators, on the other.
Wenow proceed to examinethe s(RV)-standardi zed returnsfor each
of the two currency series.* The quantile-quantile plotsin the middie
panel of figure 11ook radically different fromthoseinthetop panel. In
particular, they are now nearly linear, indicating that a Gaussian
distribution affords a close approximation to each of the marginal

3. The quantity “K” on the horizontal axis of the volatility signature plots is the
number of 5-minute blocks in each return interval. Hence, for example, K=6 corresponds
to 6x5=30 minute returns.

4. The reader will notice that here and throughout we do not report results of formal
tests of normality. This is intentional. All such tests strongly reject normality, because
even small deviations from normality are easily detected in the very large samples available
here. But such tests are not constructive, in the sense that they convey little information
regarding the “size” and “shape’ of the deviation from normality. We find quantile-
quantile plots, along with standard skewness and kurtosis coefficients, much more
informative. Hence we focus on them.
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distributions.

The diagnostic statistics in the second panel of table 1 confirm that
impression: thedistributionsof thes(RV) standardized daily returnsare
remarkably close to a standard normal. The means are near zero, the
standard deviations are close to one, the skewnesses coefficients are
close to zero, and the coefficients of kurtosis are near three® If

5. In an independent study, Bollen and Inder (1999) have recently observed that the
distribution of o(RV)-standardized daily S& P500 futures returns also appears approximately
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anything, the distributions appear slightly thin-tailed, or platykurtic.
Interpreting the realized volatility as an ideal measure of the rate of
information flow to the market, thesefindings are therefore consistent
with the distributional assumptions underlying the Mixture-of-
Distributions-Hypothesis (MDH) as originally advocated by Clark
(1973); seed so Tauchenand Pitts(1983), Taylor (1986), and Andersen
(1996).

Proceeding to the joint unconditional distribution of the o(RV)-
standardized returns, not surprisingly, we seefrom the second panel sof
table 1 and figure 2 that the correlation remains high. Interestingly,
however, theoutliersin thejoint density have been largely eliminated.
Asfor the conditional distribution, the correlogramsinfigure 3 for the
squares and the cross product of the daily o(RV)-standardized returns
indicatetheabsence of any remaining conditional variancedynamicsfor
the DM/$ rate, and a great reduction in the conditiona variance
dynamicsfor the Yen/$ rate. Meanwhile, the autocorrelationsfor the
cross product of the standardized returns decay more slowly than the
autocorrel ationsfor the product of theraw returns. Thus, although the
univariate standardization haslargely eliminated theconditiona variance
dynamics, it hasactually magnified the conditional covariancedynamics.
Elimination of both requiresamultivariate standardization, towhichwe
now turn.

V. Multivariate Standardization by Realized Volatility

With a dlight abuse of notation, the multivariate case is conveniently
written as,

rt = Ptgt’

where both r, and &' ~ (0,1) arenow Nx1 vectors, and P, refersto

theNxN matrix square-root of thetime-t conditional covariance matrix
for the raw returns, X, so that in particular PP'=%,. Of course, the

Gaussian.
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matrix square-root operator is not unique. For concreteness, we rely
here on the unique Nx N lower-triangular Cholesky factorization. The
corresponding P-standardized return vector is then readily defined as

gt = Pt_lrt'

which, ingeneral, will differ from the corresponding vector of stacked
univariate o-standardized returns. In particular, we have

2 0 0
s = %TDDt UIDZWD =PP = Sirjm % Pit pﬂ%
(Pove Ow [ o P11 0 Paof]

=S Pl Py Py U
PucPor  Poy + Pax

where we have arbitrarily arranged the bivariate returns as (DM/$,
Yen/$). Upon matching terms, it follows that

Pit = Oppy

Py = JDYI/UDDt ,

P2y :\/0th _Utzm/atzmt )
so that

0

OodoO
OoOdonO

1
pl= 1 E P2 00 - Pr
' Pt Poxt T P2 Pred U= Poy LD
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Hence, P-standardization of a time-t return vector is equivalent to
element-by-element, or univariate, o-standardization only inthe specia

and counterfactual caseof o, = 0. TheP-standardization simply o-

standardizesthereturn placedfirstintheordering, whereasit substitutes
alinear combination of the two unstandardized returns for the second
return.®

Of course, the P matrix involves both exchange rate variancesand

their covariance. Analogous to our realized variance estimator, the
realized covarianceisreadily defined asthe sum of theintra-day cross
products:

Opy (RV)E z j:]_'m'48AIOg D(48),t—1+j/48 X AIOgY(48),t—1+j/48 :

Armed with these realized variances and covariances, we now
proceed to construct and examine -standardized returns.

We report the resultsin the third panel of table 1 and figures 1-3.”
The differences, as expected, arise primarily in the multivariate
dimensions of the distribution. The sample correlation between the
bivariate P(RV)-standardized returns, asreported in table 1, is greatly
reduced from .66 to only .08. Moreover, the scatterplot reported inthe
third panel of figure 2 now appearsspherical, confirmingthenegligible
correlation. Importantly, the correlogram for the cross products of the
daily P(RV)-standardized returns, reported inthethird panel of figure 3,

6. This mirrors the dependence on the ordering of the variables in the analysis of
vector autoregressions identified by a Wold Causal Chain.

7. We have ordered the bivariate returns as (DM/$, Yen/$). Although in general the
ordering can affect the results, it isinconsequential in the present application.
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confirmsthat the conditional covariancedynamicshave been eliminated.
The differences, however, are not exclusively in terms of the
multivariate features. In particular, the P(RV)-standardization also
producesanimproved correlogramfor the Y en/$returnsrel ativeto that
of the o(RV)-standardized returns.

V. Standardization by GARCH(1,1) Volatility and by For ecastsof
Realized Volatility

Numerous parametric volatility models have been suggested in the
literaturefor best capturing the conditional temporal dependenciesin o, .

The most commonly used specification is the simple univariate
GARCH(1,1) model, and wefollow standard practiceby utilizingthisas
an illustrative benchmark for each of the two rates. That is, we posit
that

Jtz =Wt mﬁl + ﬁo-tz—l'

We refer to the associated estimates of the conditional standard
deviationsaso(GARCH), withthes(GARCH)-standardized daily returns
defined accordingly.

Consistent with the prior literature, the summary statistics in the
fourth panel of table 1 show that standardization by 6(GARCH) reduces,
but does not eliminate, the excess kurtosis. In particular, the sample
kurtosisfor theDM/$dropsfrom5.4t04.8, whilethe Y en/$ kurtosisis
reduced from 7.4t05.4. Thus, ineach case, significant excesskurtosis
remains after the standardization.

Itisnatural to ask why such different results obtain for the o(RV)-
standardized versusthes(GARCH)-standardized returns. Of course, in
general, we would expect different measures for o, to affect the
properties of the standardized returns. However, in this case, thereis
aspecific aspect of the calcul ations that makes an obvious difference:
o,(RV) isan estimate of thevolatility for theday-t returnsconditional on
the continuous (or high-frequency discrete intraday) sample path of
stochastic volatility up to and including day t, whereas 6,(GARCH) is
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an estimate of thevolatility of day-t returns conditional onthediscrete
sample path of returns up to but not including day t.

To further underscore the importance of this difference, we next
calcul ate 6,(RVF) asaone-day-ahead forecast of therealized volatility
made at day t—1, where the forecast is obtained by linear projection of
therealized volatility onitsown past. Thatis, wefitan ARMA model
torealized volatility and use the fitted model to make forecasts. This
approach ismuch closer in spirit to the 6(GARCH) estimator analyzed
above, and wetherefore conjecturethat standardization by ¢,(RVF) will
reduce, but not eliminate, the excess kurtosis.®

For ease of comparison to the GARCH(1,1) case, we shall rely on
a simple univariate ARMA(1,1) structure for modeling the realized
volatilities.® Also, indirect analogy tothe GARCH(1,1) case, themodel
isestimated over thefull ten-year sample.’® From these estimates, we
proceed with the creation of standard 1-day-ahead forecasts, from
which we obtain our ¢,(RVF) series, and corresponding o(RVF)-
standardized returns.

The diagnostic statistics in the last panel of table 1 show that the
distributions of the o(RVF)-standardized returns and the 6(GARCH)-
standardized returnsarefairly smilar. Inparticular, bothexhibit fattails
relativeto thenormal. Figure 5 clearly revealsthe reason behind this
divergence between the o(RV)-standardized returns, which to a first

8. It istempting to conjecture that o(RVF)-standardized returns will be less fat-tailed
than 6(GARCH)- standardized returns, because o, ,(RV) should provide a superior measure
of recent volatility relative to ¢,;,(GARCH), which is operative in the GARCH(1,1)
recursion. However, there is generally no simple relation between forecasts based on more
relative to less information and the resulting amount of excess kurtosis of the corresponding
standardized returns, as explained for examplein Nelson (1996).

9. The univariate o(RV) forecasting exercise reported here is highly stylized. A more
detailed analysis based on a multivariate model is undertaken in Andersen, Bollerslev,
Diebold and Labys (2001b). A related approach was recently pursued by Taylor and Xu
(1997) in analyzing the informational content in high-frequency exchange rates and implied
volatilities from options.

10. Assuming no structural breaks during our 10-year sample, and that the dynamics
remained unchanged, we can justify the use of one-day-ahead volatility forecasts based on
full-sample parameter estimates. Estimation with the full sample aso has the obvious
advantage that it avoids the early-on instability associated with recursive estimation.
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approximation appear Gaussian, and the leptokurtic ¢(RVF)- and
0(GARCH)-standardized returns. The ¢(RVF) and ¢,(GARCH)
volatility seriesare both one-day-ahead forecasts, and so are smoother
than the object being forecast, whichiseffectively the g,(RV) volatility
series. Hence, standardization by o,(RVF) or 6,(GARCH) isinsufficient
to eliminate the excesskurtosis, whereas standardization by the s,(RV)
is able to accomplish that goal.

V1. Summary and Concluding Remarks

It iswell known that daily asset returns are fat-tailed relative to the
Gaussiandistribution, and that thefat tail saretypical ly reduced but not
eiminated whenreturnsare standardized by vol atilities estimated from
popular modelssuch asGARCH. Wehave considered two major dollar
exchangerates, and we have shown that returns standardized instead by
the realized volatilities of Andersen, Bollerslev, Diebold and Labys
(2000a) are very nearly Gaussian. We performed both univariate and
multivariate anayses, and wetraced the different eff ectsof thedifferent
standardizationsto differencesininformation sets, thereby extending the
independent work of Zhou (1996).

Our analysisisimportant becauseit hel ps set the stagefor improved
high-dimensiona volatility modeling and out-of -sampleforecasting, which
in turn hold promise for the development of better decision making in
practical situationsof risk management, portfolio alocation, and asset
pricing. Thelognormal-normal mixture model devel opedin Andersen,
Bollerdev, Diebold and Labys (2001b), for example, reliesheavily on
both thelognormality of realized volatility, asdocumentedin Andersen,
Bollersev, Diebold and Labys (2001a) and Andersen, Bolserslev,
Diebold and Ebens(2001), andthenormality of returns standardized by
realized volatility, as documented here.
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