
*This work was supported by the National Science Foundation.  We are grateful to 
Olsen and Associates for making available the intraday exchange rate quotations.  For useful 
comments we thank David Backus, David Bates, Rob Engle, John Geweke, and seminar 
participants at New York University.  Parts of this paper were written while Diebold visited 
the Stern School of Business, New York University, whose hospitality is gratefully 
acknowledged.

(Multinational Finance Journal, 2000, vol. 4, no. 3&4, pp. 159–179)
©Multinational Finance Society, a nonprofit corporation.  All rights reserved.  
DOI: 10.17578/4-3/4-2

1

Exchange Rate Returns Standardized by
Realized Volatility are (Nearly) Gaussian*

Torben G. Andersen
Northwestern University, U.S.A.

Tim Bollerslev
Duke University and NBER, U.S.A.

Francis X. Diebold
University of Pennsylvania and NBER, U.S.A.

Paul Labys
University of Pennsylvania, U.S.A.

It is well known that high-frequency asset returns are fat-tailed relative to
the Gaussian distribution, and that the fat tails are typically reduced but not
eliminated when returns are standardized by volatilities estimated from popular
ARCH and stochastic volatility models.  We consider two major dollar exchange
rates, and we show that returns standardized instead by the realized volatilities
of Andersen, Bollerslev, Diebold and Labys (2000a) are very nearly Gaussian.
We perform both univariate and multivariate analyses, and we trace the differing
effects of the different standardizations to differences in information sets (JEL
C10, C22, C32, G15, G12).
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1.  This result has motivated the practical use of various “fudge-factors” relative to the
standard normal quantiles in the construction of Value-at-Risk type statistics.  

I.  Introduction

The prescriptions of modern financial risk management hinge critically
on the associated characterization of the distribution of future returns
[cf., Diebold, Gunther, and Tay (1998), and Diebold, Hahn, and Tay
(1999)].  Because volatility persistence renders speculative returns
temporally dependent [e.g., Bollerslev, Chou, and Kroner (1992)], it is
the conditional return distribution, not the unconditional distribution,
that is of relevance for risk management.  This is especially true in high-
frequency situations, such as monitoring and managing the risk
associated with the day-to-day operations of a trading desk, where
volatility clustering is a well recognized fact of life.

Unconditional distributions of exchange rate returns are routinely
found to be symmetric but highly leptokurtic.  Standardized daily or
weekly returns from ARCH and related stochastic volatility models also
appear symmetric but leptokurtic; that is, the distributions are not only
unconditionally, but also conditionally leptokurtic, although less so than
unconditionally.  Hence a sizable literature explicitly attempts to model
the fat-tailed conditional distributions, including, for example, Bollerslev
(1987), Engle and Gonzalez-Rivera (1991), and Hansen (1994).

Let us make the discussion more precise.  Assuming that return
dynamics operate only through the conditional variance, a standard
decomposition of the return innovation is rt= t �t  where t refers to the

time-t conditional standard deviation, and .  Thus, given ( )0,1iid
tε � tσ

it would be straightforward to back out �t and assess its distributional
properties.  Of course, t is not directly observable.  When using an
estimate of t, the distributions of the resulting standardized returns are
typically found to be fat-tailed, or leptokurtic.1

The main focus of the present paper is similar – we are also
concerned with the shape of the distributions of standardized returns.
However, there is an important distinction:  our volatility measure is
fundamentally different from the ARCH and related estimators that
have featured prominently in the literature, and hence our estimates of
the conditional distribution differ as well.  In particular, we rely on so-
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called realized volatility measures constructed from high-frequency
intraday returns, as previously analyzed by Schwert (1990), Hsieh
(1991), Andersen and Bollerslev (1998), and Andersen, Bollerslev,
Diebold and Labys (2001a), Andersen, Bollerslev, Diebold and Ebens
(2001), among others.

We proceed to study ten years of high-frequency returns for the
Deutschemark - U.S. Dollar (DM/$) and Japanese Yen - U.S. Dollar
(Yen/$) exchange rates.  In order to establish a proper benchmark, in
section 2, we provide a characterization of the distribution of the daily
unstandardized returns.  In section 3, we characterize the distribution of
the daily returns when standardized by univariate realized volatility
measures, and, in section 4, we characterize the distribution of the
returns when standardized by realized volatilities in a multivariate
fashion.  For comparison, in section 5, we examine the distribution of
returns standardized by GARCH(1,1) volatilities, along with the
distribution of returns standardized by one-day-ahead volatility forecasts
from a simple ARMA(1,1) model fit directly to realized volatility.  We
conclude in section 6.

II.  Unstandardized Returns

Our empirical analysis is based on 10-year time series of 5-minute DM/$
and Yen/$ returns from December 1, 1986 through December 1, 1996.
The data were kindly supplied by Olsen & Associates.  After omitting
weekend and other holiday non-trading periods, as detailed in Andersen,
Bollerslev, Diebold, and Labys (2001a), we are left with a total of
T=2,445 complete days, each of which consists of 288 5-minute returns.
From these we proceed to construct time series of continuously
compounded 30-minute and daily returns.

We begin our analysis with a summary of the distributions for the
unstandardized, or raw, daily DM/$ and Yen/$ returns.  The results
appear in table 1 and figures 1 through 3.  Consistent with the extant
literature, the s-shaped quantile-quantile plots for the two marginal
distributions in the top panel of figure 1 indicate that both returns are
symmetric but fat-tailed relative to the normal distribution.  The statistics
reported in the first panel of table 1 confirm that impression:  the sample
skewness is near 0 for both series, but the sample kurtoses are well
above the normal value of 3.



Multinational Finance Journal162

T
A

B
L

E
 1

.
D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
fo

r 
D

ai
ly

 E
xc

ha
ng

e 
R

at
e 

R
et

ur
ns

U
n-

St
an

da
rd

iz
ed

(R
V

) 
St

an
da

rd
iz

ed
P

(R
V

) 
St

an
da

rd
iz

ed
(G

A
R

C
H

) 
St

an
da

rd
iz

ed
(R

V
F

) 
St

an
da

rd
iz

ed

D
M

/$
Y

en
/$

D
M

/$
Y

en
/$

D
M

/$
Y

en
/$

D
M

/$
Y

en
/$

D
M

/$
Y

en
/$

M
ea

n
–.

00
7

–.
00

9
–.

00
7

.0
07

–.
00

7
.0

16
–.

00
2

–.
01

1
–.

00
1

–.
01

3
M

ed
ia

n
–.

01
.0

07
–.

01
7

.0
15

–.
01

7
.0

28
–.

00
3

.0
17

–.
01

6
.0

11
M

ax
im

um
3.

90
9

5.
44

5
3.

04
2.

97
1

3.
04

2.
55

7
5.

37
0

5.
95

4
5.

78
2

7.
4

M
in

im
um

–3
.3

33
–3

.6
82

–2
.7

53
–2

.7
47

–2
.7

53
–2

.7
04

–4
.8

14
–4

.6
81

–4
.4

7
–5

.2
61

S
td

.D
ev

.
.7

1
.7

05
1.

00
9

.9
84

1.
00

9
.8

83
1.

00
1

1
1.

04
7

1.
03

5
S

ke
w

ne
ss

.0
33

.0
52

.0
15

.0
02

.0
15

–.
07

3
–.

02
7

–.
13

9
.0

01
–.

00
8

K
ur

to
si

s
5.

39
5

7.
35

7
2.

40
6

2.
41

4
2.

40
6

2.
62

2
4.

75
3

5.
40

5
4.

77
9

6.
16

1
C

or
re

la
ti

on
.6

59
.6

61
.0

81
.6

61
.6

76



Exchange Rate Volatility 163

-4

-2

0

2

4

-4 -2 0 2 4 6

DM/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

Unstandardized

-4

-2

0

2

4

-4 -2 0 2 4 6

Yen/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

Unstandardized

-4

-2

0

2

4

-4 -2 0 2 4 6

DM/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

Sigma(RV)
Standardized

-4

-2

0

2

4

-4 -2 0 2 4 6

Yen/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

Sigma(RV)
Standardized

-4

-2

0

2

4

-4 -2 0 2 4 6

DM/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

P(RV)
Standardized

-4

-2

0

2

4

-4 -2 0 2 4 6

Yen/$ Return Quantile

N
or

m
al

 Q
ua

nt
ile

P(RV)
Standardized

FIGURE 1.— Quantile plots daily exchange rate returns.
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FIGURE 2.— Scatterplots of daily exchange rate returns.
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FIGURE 3.—Sample autocorrelation functions daily exchange rate
returns.
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2.   In an abuse of notation, we will continue to use t to denote an estimate of the
volatility, as the meaning will be clear from context.

Turning to the joint distribution, not surprisingly, the two rates show
considerable dependence, with a sample correlation of .66.  This high
degree of dependence is further underscored by the bivariate scatterplot
in the top panel of figure 2, which also clearly illustrates the marginal fat
tails in terms of the many outliers relative to the tight ellipsoid expected
under bivariate normality.

Finally, we consider the conditional distribution of the unstandardized
returns, as summarized by the autocorrelations for each of the two daily
squared return series and the cross product of the two rates.  The
relevant correlograms to a displacement of 100 days, along with the
Bartlett standard errors, appear in the top panel of figure 3.  Again,
directly in line with existing evidence in the literature, the results indicate
highly persistent conditional variance and covariance dynamics.

III.  Univariate Standardization by Realized Volatility

In the absence of any short-run predictability in the mean, which is a
good approximation for the two exchange rates analyzed here, the
univariate return series are naturally decomposed as rt= t �t, where

, and  is the time-t conditional standard deviation.  On( )0,1iid
tε � tσ

rearranging this decomposition, we obtain the -standardized return,

,t
t

t

rε
σ

=

on whose distribution and dependence structure we now focus.
In practice, of course, t  is unknown and must be estimated.2  Many

volatility models have been proposed in the literature.  However, as
formally shown by Andersen, Bollerslev, Diebold and Labys (2001a), in
a continuous time setting the ex post volatility over a day may be
estimated to any desired degree of accuracy by summing sufficiently
high-frequency returns within the day.  Following this analysis we shall
refer to the corresponding measures as realized volatilities.

In order to define formally our daily realized volatilities, let the two
series of 30-minute DM/$ and Yen/$ returns be denoted by logD(48),t
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3.   The quantity “K” on the horizontal axis of the volatility signature plots is the
number of 5-minute blocks in each return interval.  Hence, for example, K=6 corresponds
to 6×5=30 minute returns.

4.  The reader will notice that here and throughout we do not report results of formal
tests of normality.  This is intentional.  All such tests strongly reject normality, because
even small deviations from normality are easily detected in the very large samples available
here.  But such tests are not constructive, in the sense that they convey little information
regarding the “size” and “shape” of the deviation from normality.  We find quantile-
quantile plots, along with standard skewness and kurtosis coefficients, much more
informative.  Hence we focus on them.

and logY(48),t , respectively, where t = 1/48, 2/48, ..., 2,445, and “48"
refers to the 48 30-minute intervals in the 24-hour trading day.  From
these 48×2,445 = 117,360 30-minute returns, we estimate the daily
variances by simply summing the 48 squared returns within each day.
That is,

,( ) ( )( )2
2

48 , 1 481, ,48
logDt t jj

RV Dσ − +=
≡ ∆∑

�

,( ) ( )( )2
2

48 , 1 481, ,48
logYt t jj

RV Yσ − +=
≡ ∆∑

�

where t =
 1, 2, ..., 2,445, and RV stands for “realized volatility.”  Our

choice of 30-minute returns is motivated by examination of the volatility
signature plot of Andersen, Bollerslev, Diebold and Labys (2000), which
records average realized volatility as a function of underlying sampling
frequency.  In the present application, average DM/$ and Yen/$ realized
volatility remain stable as underlying sampling frequency increases up to
approximately 30-minute returns, as shown in figure 4.3  This suggests
that in the present context 30-minute sampling provides a reasonable
balance between the salient market microstructure frictions at the very
highest sampling frequencies, on the one hand, and the accuracy of the
continuous record asymptotics underlying the estimators, on the other.

We now proceed to examine the (RV)-standardized returns for each
of the two currency series.4  The quantile-quantile plots in the middle
panel of figure 1 look radically different from those in the top panel.  In
particular, they are now nearly linear, indicating that a Gaussian
distribution affords a close approximation to each of the marginal
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5.   In an independent study, Bollen and Inder (1999) have recently observed that the
distribution of (RV)-standardized daily S&P500 futures returns also appears approximately
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FIGURE 4.—Volatility signature plots daily exchange rate returns. 

distributions.
The diagnostic statistics in the second panel of table 1 confirm that
impression:  the distributions of the (RV) standardized daily returns are
remarkably close to a standard normal.  The means are near zero, the
standard deviations are close to one, the skewnesses coefficients are
close to zero, and the coefficients of kurtosis are near three.5  If
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Gaussian.

anything, the distributions appear slightly thin-tailed, or platykurtic.
Interpreting the realized volatility as an ideal measure of the rate of
information flow to the market, these findings are therefore consistent
with the distributional assumptions underlying the Mixture-of-
Distributions-Hypothesis (MDH) as originally advocated by Clark
(1973); see also Tauchen and Pitts (1983), Taylor (1986), and Andersen
(1996).

Proceeding to the joint unconditional distribution of the (RV)-
standardized returns, not surprisingly, we see from the second panels of
table 1 and figure 2 that the correlation remains high.  Interestingly,
however, the outliers in the joint density have been largely eliminated.
As for the conditional distribution, the correlograms in figure 3 for the
squares and the cross product of the daily (RV)-standardized returns
indicate the absence of any remaining conditional variance dynamics for
the DM/$ rate, and a great reduction in the conditional variance
dynamics for the Yen/$ rate.  Meanwhile, the autocorrelations for the
cross product of the standardized returns decay more slowly than the
autocorrelations for the product of the raw returns.  Thus, although the
univariate standardization has largely eliminated the conditional variance
dynamics, it has actually magnified the conditional covariance dynamics.
Elimination of both requires a multivariate standardization, to which we
now turn.

IV.  Multivariate Standardization by Realized Volatility

With a slight abuse of notation, the multivariate case is conveniently
written as,
 ,t t tr Pε=

where both  and  are now N×1 vectors, and Pt refers totr ( )0,iid
t Iε �

the N×N matrix square-root of the time-t conditional covariance matrix
for the raw returns, �t so that in particular  Of course, the.t t tP P′ = Σ
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matrix square-root operator is not unique.  For concreteness, we rely
here on the unique N×N lower-triangular Cholesky factorization.  The
corresponding P-standardized return vector is then readily defined as

1 ,t t tP rε −=

which, in general, will differ from the corresponding vector of stacked
univariate -standardized returns.  In particular, we have

2
11 11 21

2
21 22 22

0

0
t t tDDt DYt

t t t
t t tDYt YYt

p p p
PP

p p p

σ σ
σ σ

     ′Σ = = =     
    

2
11 21 11

2 2
11 21 21 22

,t t t

t t t t

p p p

p p p p

 
=  + 

where we have arbitrarily arranged the bivariate returns as (DM/$,
Yen/$).  Upon matching terms, it follows that 

,11t DDtp σ=

,21t DYt DDtp σ σ=

,2 2 2
22t YYt DYt DDtp σ σ σ= −

so that

11221

21 11 2111 22

11 22 22

1
0

01

1
tt

t
t t tt t

t t t

pp
P

p p pp p

p p p

−

 
    = =   − − 
 
 
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6.   This mirrors the dependence on the ordering of the variables in the analysis of
vector autoregressions identified by a Wold Causal Chain.

7.   We have ordered the bivariate returns as (DM/$, Yen/$).  Although in general the
ordering can affect the results, it is inconsequential in the present application.

.

2 2 2 2 2 2 2

1
0

1 1

DDt

DYt

DDt YYt DYt DDt YYt DYt DDt

σ
σ
σ σ σ σ σ σ σ

 
 
 =  
− × 

− −  

Hence, P-standardization of a time-t return vector is equivalent to
element-by-element, or univariate, -standardization only in the special

and counterfactual case of .  The P-standardization simply -0DYtσ =
standardizes the return placed first in the ordering, whereas it substitutes
a linear combination of the two unstandardized returns for the second
return.6

Of course, the  matrix involves both exchange rate variances andtP

their covariance.  Analogous to our realized variance estimator, the
realized covariance is readily defined as the sum of the intra-day cross
products:

.( ) ( ) ( )48 , 1 / 48 48 , 1 / 481, ,48
log logDY t j t jj

RV D Yσ − + − +=
≡ ∆ × ∆∑

�

Armed with these realized variances and covariances, we now
proceed to construct and examine -standardized returns.

We report the results in the third panel of table 1 and figures 1-3.7

The differences, as expected, arise primarily in the multivariate
dimensions of the distribution.  The sample correlation between the
bivariate P(RV)-standardized returns, as reported in table 1, is greatly
reduced from .66 to only .08.  Moreover, the scatterplot reported in the
third panel of figure 2 now appears spherical, confirming the negligible
correlation.  Importantly, the correlogram for the cross products of the
daily P(RV)-standardized returns, reported in the third panel of figure 3,
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confirms that the conditional covariance dynamics have been eliminated.
The differences, however, are not exclusively in terms of the
multivariate features.  In particular, the P(RV)-standardization also
produces an improved correlogram for the Yen/$ returns relative to that
of the (RV)-standardized returns.

V.  Standardization by GARCH(1,1) Volatility and by Forecasts of
Realized Volatility

Numerous parametric volatility models have been suggested in the
literature for best capturing the conditional temporal dependencies in .tσ
The most commonly used specification is the simple univariate
GARCH(1,1) model, and we follow standard practice by utilizing this as
an illustrative benchmark for each of the two rates.  That is, we posit
that

2 2 2
1 1.t t trσ ω α βσ− −= + +

We refer to the associated estimates of the conditional standard
deviations as (GARCH), with the (GARCH)-standardized daily returns
defined accordingly.

Consistent with the prior literature, the summary statistics in the
fourth panel of table 1 show that standardization by (GARCH) reduces,
but does not eliminate, the excess kurtosis.  In particular, the sample
kurtosis for the DM/$ drops from 5.4 to 4.8, while the Yen/$ kurtosis is
reduced from 7.4 to 5.4.  Thus, in each case, significant excess kurtosis
remains after the standardization.

It is natural to ask why such different results obtain for the (RV)-
standardized versus the (GARCH)-standardized returns.  Of course, in
general, we would expect different measures for t to affect the
properties of the standardized returns.  However, in this case, there is
a specific aspect of the calculations that makes an obvious difference:

t(RV) is an estimate of the volatility for the day-t returns conditional on
the continuous (or high-frequency discrete intraday) sample path of
stochastic volatility up to and including day t, whereas t(GARCH) is
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8.   It is tempting to conjecture that (RVF)-standardized returns will be less fat-tailed
than (GARCH)- standardized returns, because t–1(RV) should provide a superior measure
of recent volatility relative to t–1(GARCH), which is operative in the GARCH(1,1)
recursion.  However, there is generally no simple relation between forecasts based on more
relative to less information and the resulting amount of excess kurtosis of the corresponding
standardized returns, as explained for example in Nelson (1996).

9.  The univariate (RV) forecasting exercise reported here is highly stylized.  A more
detailed analysis based on a multivariate model is undertaken in Andersen, Bollerslev,
Diebold and Labys (2001b).  A related approach was recently pursued by Taylor and Xu
(1997) in analyzing the informational content in high-frequency exchange rates and implied
volatilities from options.

10.  Assuming no structural breaks during our 10-year sample, and that the dynamics
remained unchanged, we can justify the use of one-day-ahead volatility forecasts based on
full-sample parameter estimates.  Estimation with the full sample also has the obvious
advantage that it avoids the early-on instability associated with recursive estimation.

an estimate of the volatility of day-t returns conditional on the discrete
sample path of returns up to but not including day t.

To further underscore the importance of this difference, we next
calculate t(RVF) as a one-day-ahead forecast of the realized volatility
made at day t–1, where the forecast is obtained by linear projection of
the realized volatility on its own past.  That is, we fit an ARMA model
to realized volatility and use the fitted model to make forecasts.  This
approach is much closer in spirit to the (GARCH) estimator analyzed
above, and we therefore conjecture that standardization by t(RVF) will
reduce, but not eliminate, the excess kurtosis.8

For ease of comparison to the GARCH(1,1) case, we shall rely on
a simple univariate ARMA(1,1) structure for modeling the realized
volatilities.9  Also, in direct analogy to the GARCH(1,1) case, the model
is estimated over the full ten-year sample.10  From these estimates, we
proceed with the creation of standard 1-day-ahead forecasts, from
which we obtain our t(RVF) series, and corresponding (RVF)-
standardized returns.

The diagnostic statistics in the last panel of table 1 show that the
distributions of the (RVF)-standardized returns and the (GARCH)-
standardized returns are fairly similar.  In particular, both exhibit fat tails
relative to the normal.  Figure 5 clearly reveals the reason behind this
divergence between the (RV)-standardized returns, which to a first
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approximation appear Gaussian, and the leptokurtic (RVF)- and
(GARCH)-standardized returns.  The t(RVF) and t(GARCH)

volatility series are both one-day-ahead forecasts, and so are smoother
than the object being forecast, which is effectively the t(RV) volatility
series.  Hence, standardization by t(RVF) or t(GARCH) is insufficient
to eliminate the excess kurtosis, whereas standardization by the t(RV)
is able to accomplish that goal.

VI.  Summary and Concluding Remarks

It is well known that daily asset returns are fat-tailed relative to the
Gaussian distribution, and that the fat tails are typically reduced but not
eliminated when returns are standardized by volatilities estimated from
popular models such as GARCH.  We have considered two major dollar
exchange rates, and we have shown that returns standardized instead by
the realized volatilities of Andersen, Bollerslev, Diebold and Labys
(2000a) are very nearly Gaussian.  We performed both univariate and
multivariate analyses, and we traced the different effects of the different
standardizations to differences in information sets, thereby extending the
independent work of Zhou (1996).

Our analysis is important because it helps set the stage for improved
high-dimensional volatility modeling and out-of-sample forecasting, which
in turn hold promise for the development of better decision making in
practical situations of risk management, portfolio allocation, and asset
pricing.  The lognormal-normal mixture model developed in Andersen,
Bollerslev, Diebold and Labys (2001b), for example, relies heavily on
both the lognormality of realized volatility, as documented in Andersen,
Bollerslev, Diebold and Labys (2001a) and Andersen, Bolserslev,
Diebold and Ebens (2001), and the normality of returns standardized by
realized volatility, as documented here.
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