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I.  Introduction

It is consistently observed that systematic selling of volatility in the
options market results in economic gains. Options strategies that engage

(Multinational Finance Journal, 2017, vol. 21, no. 2, pp. 49–90)
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in selling volatility practice are gaining popularity among practitioners.
Theories of finance suggest that economic gains by selling volatility can
be attributed to variance risk premium (VRP). VRP is the difference
between risk neutral and physical expectation of variance. Many studies
investigate the presence of volatility or variance risk premium. For
example, Bakshi and Kapadia (2003), Carr and Wu (2008), Bollerslev,
Tauchen, and Zhou (2009), and Garg and Vipul (2015) document the
presence and stylized facts about volatility or variance risk premium. 
For example, Bollerslev, Tauchen and Zhou (2009), Bollerslev, Gibson,
and Zhou (2011), Bekaert and Hoerova (2014) relate variance risk
premium with market-wide risk aversion. Carr and Wu (2008) argue that
variance risk is priced as an independent source of risk. Yet, very few
studies attempt to understand the determinants of VRP and thus they are
less understood. We take this up in this study and strive to understand
the VRP in the context of a demand and supply framework of options. 
Previous studies of Bollen and Whaley (2004), Garleanu , Pedersen, and
Poteshman (2009) demonstrate that the net demand of options
influences  prices and implied volatility of options. For example, Bollen
and Whaley (2004) show that net buying pressure impacts the implied
volatility of options. Similarly, Garleanu, Pedersen and
Poteshman(2009) document that market participants are net buyers of
index options and that demand of options influences prices. 

The rationale behind variance risk premium can be explained by the
mispricing of options. In an ideal world, options are redundant
securities. But in practice, there is a strong demand for them owing to
several reasons. Informed investors may prefer options over the
underlying assets because of the high leverage provided by the former
(Black,1975\, Grossman 1977). On the other hand, presence of
stochastic volatility prompts volatility informed investors to trade on
volatility by using non-linear securities such as options. These
incentives prompt investors to participate in options trading. Previous
studies investigate the informational role of the options market and
discuss whether informed traders trade use it for trading (Chakravarty,
Gulen,and Mayhew (2004)). Informed players may use options to trade
directional movement information of the underlying asset and its
expected future volatility information, or any other information by
taking long, short positions on call or put options or their different
combinations. A single underlying asset has a wide range of strike
prices and multiple maturities, which make information extraction from
options trading difficult.  In a recent study, Holowczak, Hu, and Wu
(2014) show how to extract a particular type of information by
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aggregate option transactions. In this study, we are interested to extract
directional and volatility demand information of options. A call option
is a positive exposure while put option is a negative exposure to the
underlying stock price. Delta of an option measures the sensitivity of the
option price to the underlying stock price movement. So we assign a
positive delta to the call options order imbalance and negative delta to
the put options order imbalance for each strike-maturity level. Thus, at
an aggregate level, order imbalance of call and put options should take
opposite signs and the net aggregated order imbalance of a call and put
combination at that strike and maturity would measure the underlying
stock price movement exposure. This method is different from Bollen
and Whaley (2004) study in which they capture the net buying pressure
of options. Bollen and Whaley (2004) used absolute delta as a measure
of net buying pressure for call and put options. Bollen and Whaley
(2004) argue that net demand of an option contract makes it deviate
from its intrinsic values and impacts its implied volatility. Different
option contracts for the same underlying stock experience different net
buying pressures. Accordingly, the implied volatilities of these option
contracts vary and produce apparent anomaly in the market, which is
known as volatility smile or smirk or skew. Coming to the calculation
of net volatility demand, Holowczak, Hu,and Wu (2013) argue that
vega, which is the sensitivity of the option price to the underlying
volatility movement, is the same for both call and put options for the
same strike price and maturity. That means in an ideal world, traders do
not have any reason to prefer one type of options (call or put) over the
others in trading volatility. Vega is positive for both call and put
options. The net volatility demand of a strike and maturity can then be
calculated by the aggregated vega-weighted order imbalance of call and
put options at that strike and maturity.

One of the stylized facts of implied volatility is that on an average
it exceeds the realized volatilities. Theory suggests that difference is the
premium paid by the buyers to the sellers of the options. The buyer of
the options pays the premium because of the risk of losses during
periods when realized volatility starts exceeding the option implied
volatility. Increase in realized volatility coincides with downside market
movement and increase in uncertainty in the investment environment
(Bakshi and Kapadia 2003).  Extant literature documents the presence
of volatility/variance risk premium across different financial markets.
Many studies have concluded that volatility risk is priced through
variance risk premium (Bakshi and Kapadia, 2003; Carr and Wu, 2008;
Coval and Shumway, 2001). For example, Bakshi and Kapadia (2003)
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document the presence of variance risk premium (VRP) by delta hedged
option gains. Using the difference between realized variance and
variance swap rate as variance risk premium, Carr and Wu (2008) show
strong variance risk premium for S&P and Dow indices. Further, they
argue that the variance risk is independent of the traditional sources of
risk. In the context of the Indian market, Garg and Vipul (2015)
document the presence of volatility risk premium. They confirm that
option writers make consistent economic profits over the life of the
options because of the presence of volatility risk premium. 

Previous related studies on options trading and volatility include
Bollen and Whaley (2004), and Ni, Pan, and Poteshman (2008). Bollen
and Whaley (2004) explain the shape of implied volatility function
(IVF) by the net demand of options. In the Black-Scholes framework,
the supply curve of the options is horizontal regardless of the demand
for the options. Bollen and Whaley (2004) argue that the supply curve
of the options is upward sloping rather than horizontal because of the
limits to arbitrage1. The upward supply sloping curve of options make
them mispriced from their Black-Scholes intrinsic values. Hence, the net
demand of a particular option contract affects the implied volatility of
that series and determines the implied volatility function. Bollen and
Whaley (2004) measure the net demand of an option contract by the
difference between the numbers of buyer and seller motivated contracts
traded traded multiplied by the absolute delta of that option contract.
The paper concludes that absolute delta-weighted options order flow
impacts the implied volatility function. Similarly, Ni, Pan and
Poteshman (2008) measure volatility demand by the vega-weighted
order imbalance. According to Ni, Pan and Poteshman (2008), net
volatility demand contains information about future realized volatility
of the underlying asset. They use volatility demand to forecast future
realized volatility.

This study is related to the study of Fan, Imerman, and Dai (2016).
Fan, Imerman and Dai (2016) investigate determinants of volatility risk
premium in a demand and supply framework. Their study argues that
the supply of options is related to market maker's willingness to absorb
inventory and provide liquidity. On the other hand, demand of options
emerges from the hedging requirement of tail risk. Investors use put
index to hedge tail risk. The study captures the demand effect by put

1. Shleifer and Vishny (1997) propose limits to arbitrage theory. This theory describes
that exploitation of mispriced securities by arbitrageurs is limited by their ability to absorb
intermediate losses.
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option open interest and also the supply effect by credit spread and TED
spread. We argue that volatility demand of options impacts the VRP and
propose that changes in the expected volatility would change the net
demand of volatility in the option marketplace, consequently, affecting
the implied volatility of options. Thus, magnitude of the difference
between implied variance and realized variance would emerge as a
consequence of net volatility demand. Fan, Imerman and Dai (2016)
decompose the volatility risk premium (vrp) into magnitude and
direction components. According to them, magnitude and direction of
volatility risk premium contain different information. They argue that
magnitude of the volatility risk premium reflects the imbalance in
demand and supply, while direction or sign of volatility risk premium
reflects the expectation of realized volatility. Building on the same, we
decompose the change of variance risk premium into magnitude and
direction components. We argue that expectation of future realized
volatility changes the volatility demand that drives changes in implied
volatility. Thus, magnitude of the variance risk premium reflects the
divergence or convergence of implied variance change with respect to
realized variance change. On the other hand, the sign or the direction of
change of variance risk premium reflects the expectation of realized
volatility change. When change in the variance risk premium is positive
(negative), trades expect that the expected realized volatility would
increase (decrease). We investigate empirically how change in the
volatility demand affects the magnitude of the variance risk premium,
and whether the sign of the change reflects the expectation of realized
volatility. We are interested to understand the change of magnitude of
variance risk premium by volatility demand of options. We use
vega-weighted order imbalance of options to capture the net demand of
options. Moreover, Fan, Imerman and Dai (2016) investigate the level
effect of volatility risk premium, whereas we are interested to capture
the change in its magnitude in a volatility demand framework. We
propose the following testable hypotheses:
   

H1: Net volatility demand affects the magnitude change in variance
risk premium.

H2: The sign of the change in variance risk premium reflects
expectation about the realized volatility innovations.

Main findings of our study are as follows. First, we find that
volatility demand of options significantly impacts the variance risk



Multinational Finance Journal54

premium change. Second, among moneyness categories, volatility
demand of the most expensive options significantly impacts variance
risk premium change. Third, positive (negative) sign of variance risk
premium change conveys information about positive (negative)
innovation in realized volatility.

The rest of the paper is organized as follows. Section II describes the
methodology that provides calculation details of variance risk premium
and volatility risk premium. Further, it explains the decomposition
method of directional and volatility order imbalance components.
Section III describes the data used for the study and presents the
summary. Section IV reports the results of the empirical tests. Section
V reports the robustness test results. Section VI concludes the paper.

II.  Methodology

This section explains the computation of variance risk premium. Next,
the moneyness categories used for the study are explained. The section
then explains the calculation details of volatility demand and directional
demand information from the option order flows.  Next, we explain the
empirical specifications employed for the study.

A. Variance risk premium

The formal definition of variance risk premium is the difference
between risk neutral and objective expectation of the total return
variance i.e., . Literature employs   , 1 , 1

Q P
t t t t t t tVRP E Var E Var  

different proxies for measuring variance risk premium and uses variance
risk premium and volatility risk premium interchangeably.

We compute the variance risk premium in a model-free manner.
Model-free implied volatility (MFIV) framework is proposed by
Demeterfi, Derman, Kamal, and Zou (1999), Britten-Jones and
Neuberger (2000) and is used to calculate risk-neutral expectation of
future volatility. Based on the MFIV framework, in 2003, CBOE
introduced the volatility index (VIX), which measures the short-term
expectation of future volatility. The National Stock Exchange of India
(NSE) introduced India VIX in 2008 based on the MFIV framework. We
use India VIX as risk-neutral volatility expectation. We calculate
realized variance in a model-free manner by the sum of squared returns.
Previous studies of Bollerslev, Tauchen and Zhou (2009), Drechsler 
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and Yaron (2010) have used five-minute sum of squared returns to
calculate realized variance. We also use five-minute sum of squared
return to obtain model-free realized variance. Although the definition of
variance risk premium says ex-ante expectation of realized variance, we
use ex-post realized variance of thirty calendar days while computing
VRP. This specific way of calculation of variance risk premium makes
it observable at time t and also makes it free from any modelling or
forecasting bias.

We define variance risk premium as,

(1)2 2
, 30t t t tVRP IVIX RV  

where we proxy risk-neutral measure by squared India VIX 
2 (after

transforming into its 30- calendar days risk neutral variance)  and
realized variance, taking the sum of five-minute squared returns over
thirty calendar days, treating overnight and over-weekend returns as one
five-minute interval, following Drechsler and Yaron (2010) and
Bollerslev, Tauchen and Zhou (2009). We use ex-post realized variance
to avoid forecasting bias. Thus, the above measure gives the thirty
calendar-day variance risk premium.

B. Moneyness of options and total traded quantity 

We define moneyness of an option as , following Carr logy K F
and Wu (2008), Wang and Daigler (2011). Here, K is the strike price
and F is the futures price of the Nifty index. As we aggregate
vega-weighted order imbalance for each strike and same maturity, for
both call and put options, we define the following categories of options
based on moneyness, for both call and put options.

We employ tick test to calculate the number of traded Nifty options
for the period of study and obtain proprietary Nifty options trades data
from the NSE. We calculated the number of buy and sell traded options
using Nifty options trade data.  If the trade price is above the last trade
price, it is classified as buyer-initiated. Similarly, when trade price is
below the last trade price, it is classified as seller-initiated. If the last
trade price is equal to the current trade price, the last state of

2. India VIX is the volatility index computed by the National Stock Exchange of India
based on Nifty options order book. The above measure of computation is adopted to the
model-free implied volatility framework.
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classification is kept for the current state of trade price. By tick test, we
calculate the number of options bought and sold for each moneyness
defined above in the period of study. The results are reported in table 1. 

C. Volatility Demand and Directional Demand Information

We calculate the volatility demand and directional demand information
by the proprietary snapshot data obtained from the NSE. Proprietary
data of the NSE is received for the period of July 2015 to December
2015. This snapshot data is given for five timestamps in a trading day
(we discuss data details in the data section). We create the order book
for each timestamp from the snapshot data and calculate vega-weighted
(as well as delta-weighted) order imbalance for each of the timestamp
and average the five-time stamped vega-weighted (delta-weighted) order
imbalance to compute daily vega-weighted (delta-weighted) order
imbalance for each strike and same maturity. Details of the computation
procedure are described below.

Nifty options are European in style and their maturity is identical to
those of Nifty Futures. While computing vega and delta of each
strike-maturity point, we use Nifty futures prices, following the
modified Black (1976)3 model to avoid dividend ratio calculation of the
Nifty index. The vega4 and delta5 are calculated as per the standard
Black-Scholes model.

We calculate volatility demand by the vega-weighted order
imbalance for each strike-maturity point at any time stamp (ts) as, 

    , , ,ts
K TVOI CVI K T PVI K T 

3. In the modified Black (1976), the d1 is computed as,
 where F = Nifty Futures Price, K = Strike price of the    2

1 ln 2d F K T   
option. σ = volatility of the underlying, T = Time to maturity. Following Bollen and Whaley
(2004), we use the last sixty days realized volatility (based on square root of sum of five
minute squared return for the last sixty calendar days) as volatility proxy to calculate d1.

4. The vega of both call and put is defined as , where F = Nifty 
, 1c pv F TN d

Futures price, T = time to maturity.

5. Delta of the call option is defined as Δc = N(d1) where
.   Similarly, put delta is defined as .    2

1 ln 2d F K T     
1 1p N d  

 and  represent the cumulative density and probability density function of 
1

N d  
1N d

the standard normal variable, respectively.
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where    , j j c
t t

t

vCVI K T BO SO
Volume

  

and   pj j
t t

t

v
PVI BO SO

Volume
  

 and  represent the number of  buy and sell contractsj
tBO j

tSO
outstanding for execution in the order book for each strike-maturity
point. We identify buy and sell orders that are standing for execution by
the buy-sell indicator in the snapshot data. We take the first hundred
best bids and ask orders, ignoring the rest. We scale the difference by
the volume (Volumet) of total buy and sell contracts up to the first
hundred best orders. Volume represents the number of buy and sell
orders for the first hundred best orders. vc and vp represent the vega of
the call and the put option at each strike-maturity point. CVI (K,T)
represents the volatility demand component for the call option at each
strike-maturity point. Similarly, PVI (K,T) represents the volatility
demand component for the put option at each strike-maturity point.

 represents the volatility demand at each strike-maturity point.,
ts
K TVOI

Each strike-maturity point is classified into a moneyness category
defined in table 1. In a particular time-stamp, volatility demand is
aggregated for each moneyness category based on the all strike-maturity
points belonging to the category. Thus, volatility demand for each
moneyness category is obtained for a particular timestamp. The same
computational process is repeated for five timestamps (namely,
11:00:00, 12:00:00, 13:00:00, 14:00:00, and 15:00:00). The average of
the five timestamps volatility demand of each moneyness category is
taken to arrive at the volatility demand of each moneyness category for
a particular trading day. We denote volatility demand information for
each category as , where cat=01,02,03,04,05 as defined incat

tAVOI
table 1.

Similarly, we calculate the delta-weighted order imbalance6 
(directional demand information) by a similar computational procedure,

6. Delta-weighted  order  imbalance  for  each  strike-maturity  point  is  denoted  as
 where   

. , ,ts

K T
DOI COI K T POI K T       , j j

t t c tCOI K T BO ST Volume   
and . Similar to the volatility demand     , j j

t t p tPOI K T BO SO Volume   
information, average of the five timestamps directional demand of each moneyness category
is taken to arrive at the directional demand of each moneyness category for a particular
trading day.
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the only difference being that order imbalance is weighted by the delta
of the option instead of vega. We denote directional demand
information for each category as , where cat= 01,02,03,04,05cat

tADOI
as defined in table 1. The maturity is taken as near month expiry of
Nifty options.

D. Empirical Specifications

Magnitude regression equations

As a preliminary regression, we employ the following empirical
specification (equation 2) to estimate daily change of variance risk
premium with the contemporaneous volatility demand over the
moneyness categories of options. The dependent variable is the signed
change rather than the absolute change of the variance risk premium.

(2)

  02 02
0 1 2 1

03 03 04 04 02 02
1 1 1

03 03 04 04
1 1 1

log

          δ

          

t t Nifty tt

t t t

t t t

VRP RNifty Vol ADOI

ADOI ADOI AVOI

AVOI AVOI VRP

   

 

   

    

  

    

The rationale behind estimating equation (2) is to compare and
understand whether signed change of variance risk premium contains
different information than absolute change of variance risk premium.
Absolute change is the dependent variable of equation (3) by which we
investigate hypothesis H1. 

In hypothesis H1, we investigate whether net volatility demand
affects the magnitude change in variance risk premium. We test
hypothesis H1 by the following empirical specifications (equation 3),
where absolute values of daily changes of variance risk premium are
regressed with contemporaneous volatility demand. 

(3)

  02 02
0 1 2 1

03 03 04 04 02 02
1 1 1

03 03 04 04
1 1 1 1

log

            δ

            

t t Nifty tt

t t t

t t t

VRP RNifty Vol ADOI

ADOI ADOI AVOI

AVOI AVOI VRP

   

 

   

    

  

    
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Equation (3) specification contains the daily magnitude change of
variance risk premium (|ΔVRPt|) as a dependent variable. The absolute
change of variance risk premium is considered as the magnitude change
of the variance risk premium. Equation (3) is employed to understand
whether it provides more insight about H1. If net volatility demand
impacts the change of the magnitude of the variance risk premium, in
equation (3), we expect that at least one of the slope coefficients

 of the volatility demand would be statistically 02 03 04
1 1 1, ,  

significant. We also include different control variables that might affect
the relationship between magnitude of the variance risk premium
change and net volatility demand.

The explanatory variable consists of volatility demand for different
categories of options. We ignore categories 01 and 05 options because
of the thin-traded volumes. Category 02 consists of in-the-money call
(ITMCE) and out-of-the-money put (OTMPE) options. Relationship
between volatility demand at category 02 options and absolute change
in variance risk premium depends on whether net demand of ITMCE or
OTMPE dominates the impact on the magnitude change of variance risk
premium. Similarly, category 03 option consists of at-the-money call
(ATMCE) and at-the-money put (ATMPE) options. We expect a positive
relationship between the demand of ATMCE and ATMPE options and
change in absolute variance risk premium. This is because of the fact
that at-the-money options are most sensitive to volatility changes. So,
increase in demand of the ATM options would have positive impact on
implied volatility and, in turn, on magnitude of variance risk premium
change. Category 04 option consists of in-the-money put (ITMPE) and
out-of-the-money (OTMCE). Relationship between volatility demand at
category 04 option and absolute change in variance risk premium
depends on whether net demand of ITMPE or OTMCE dominates the
impact on magnitude change of variance risk premium. Further, to
understand the effect of volatility demand on individual categories of
call and put options, different regression equations are estimated with
magnitude change of variance risk premium as the dependent variable.
The lagged term of dependent variables is kept as a control variable in
the regression equations to control for serial correlations.

We estimate the regression equations using the generalized methods
of moments (GMM), and report Newey and West (1987) corrected
t-statistics with 7 lags. Next, we discuss the set of the chosen control
variables. 
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Control variables for magnitude regression equation

First, we chose Nifty returns as one of the control variables. We expect
a negative relationship between the magnitude of variance risk premium
change and Nifty returns. This is because negative returns of Nifty
increase implied volatility. Previous studies (Giot 2005; Whaley 2009;
Badshah 2013; Chakrabarti and Kumar 2017) document that a negative
and asymmetric relationship exists between return and implied
volatility. Extant literature documents that high volatility is a
representative of high risk (Hibbert, Daigler, and Dupoyet,  2008;
Badshah 2013) and high volatility coincides with negative market
returns ( Bakshi and Kapadia 2003). So, in times of negative market
movement, variance risk premium should go up.

The next control variable is Nifty traded volume. We include traded
volume because both traded volume and volatility influence together by
information flow. We expect a positive relationship between Nifty
volume and magnitude of variance risk premium. This is because an
increase of traded volume of Nifty implies lower volatility
(Bessembinder and Seguin 1992), and lower volatility, in turn, lowers
the magnitude of variance risk premium. Nifty volume is included after
taking logarithm transformation. 

The next set of control variables consist of directional demand
information of the options i.e. . Control for02 03 04, ,t t tADOI ADOI ADOI
directional demand information seems important, following Bollen and
Whaley (2004) whoshow that absolute delta-weighted order imbalances
impact implied volatility. 
   
Empirical test with sign of change of variance risk premium

In the second hypothesis, H2 of the study, we investigate whether sign
of the change of variance risk premium contains information about the
expectation of realized volatility innovations, as discussed by Fan,
Imerman and Dai (2016) and Ait-Sahalia, Karaman, and Mancini
(2015). Following a similar line of argument, we test whether sign of
variance risk premium change conveys any information regarding the
realized volatility innovations.

(4) 0 1t tRV sign VRP      

In the equation (4), ΔRVt represents the innovation of realized volatility
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that is measured by the daily change of the realized volatility. The sign
(ΔVRPt) represents the positive or the negative sign of the change of the
variance risk premium. We expect α1 to be positive, because when there
is a positive (negative) change in variance risk premium, market
expectation in realized volatility change would be higher (lower).
Equation (4) is estimated by generalized method of moments (GMM),
and reports Newey and West (1987) corrected t-statistics with 30 lags
due to overlapping data. The next section describes data and sample of
the study.

III.  Data and Sample Description

In this section, we provide an overview of the Indian equity market.
Then we explain data sources. Lastly we present the summary statistics
of variables.

A. Indian derivatives market

Indian equity markets operate on nationwide market access, anonymous
electronic trading and a predominantly retail market; all these make the
Indian stock market the top-most among emerging markets. The NSE
had the largest share of domestic market activity in the financial year
2015-16, with approximately 83% of the traded volumes on equity spot
market and almost 100% of the traded volume on equity derivatives.  
The exchange maintained global leadership position in 2014-15 in the
category of stock index options, by number of contracts traded as per
the Futures Industry Association Annual Survey.  Also, as per the WFE
Market Highlights 2015, the NSE figures among the top five stock
exchanges globally in different categories of ranking in the derivatives
market.
   Nifty is used as a benchmark of the Indian stock market by the NSE,
which is a free float market capitalization weighted index. It consists of
50 large-cap stocks across 23 sectors of the Indian economy. We used
Nifty as the market index in the study.  The volatility index, India VIX,
was introduced by NSE on March 3, 2008, and it indicates the investor's
perception of the market's volatility in the near term (thirty calendar
days). It is computed using the best bid and ask quotes of the
out-of-the-money (OTM) call options; and OTM put options, based on
the near and next month Nifty options order book.
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B. Data Sources

Sample period of the study ranges from 1 July, 2015 to 31 December,
2015. We have obtained proprietary Nifty options trade data from the
NSE. This  data provides the details of trade number, symbol,
instrument type, expiry date, option type, corporate action level, strike
price, trade time, traded price, and traded quantity for each trading day.
We have used the data to calculate the number of buy and sell trades
over the study period i.e., 01 July, 2015 to 31 Dec, 2015 by the tick test,
as mentioned in the methodology section. We obtained snapshot data
consisting of order number, symbol, Instrument type, Expiry date, Strike
price, Option type, Corporate action level, quantity, Price, Time stamp,
Buy/Sell indicator, Day flags, Quantity flags, Price flags, Book type,
Minimum fill quantity, Quantity disclosed, and Date for GTD. We use
regular book as book type section. These are order book snapshots at 11
am, 12 noon, 1 pm, 2 pm and 3 pm on a trading day. We also obtained
minutes data of Nifty from Thomson Reuters DataStream and used it to
calculate five-minute squared return to find realized variance of the
Nifty index. We also obtained daily Nifty adjusted closing prices, Nifty
traded volume, and Nifty Futures prices from the NSE database and
risk-free interest data from the EPW time series database, as mentioned
in the methodology section.

C. Statistics of variables

Trading activity of Nifty options 

Table 2 reports the number of Nifty options traded for the period of 01
July, 2015 to 31 December, 2015.

Trading activity of the Nifty options reveals some important aspects.
First, total trading activity on call index options (51.59%) is greater than
that of put index options (48.41%). Unlike the developed markets,
where trading activity in put index options is greater than the call index
options (especially S&P 500 index options), the Indian market has
greater trading activity on call options than on put options. Second,
moneyness-wise, trading activity on ATM call and ATM put are the
largest compared to the other moneyness categories. Moreover,
proportion of trading activity on ATM call options (34.36%) is
substantially greater than ATM put options (30.03%). OTM put and
OTM call are the next largest traded options (OTM call contributes
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FIGURE 1.— Realized variance and MFIV plot (01Jul2015 to
31Dec2015)

16.68% and OTM put contributes 17.65%). ITM call and ITM put come
next as contributors to the trading activity. However, percentage-wise
their contribution is much less (ITM call 0.53% and ITM put 0.72%).
Third, interestingly, the net purchase shows that the market is a net
seller of options across all categories except DITM put and DITM call.
But the proportion of DITM put and DITM call are negligible. For that
matter, the proportion of trading activity proportion in category01 and
category05 is negligible. Therefore, we ignore category01 and
category05 for all empirical tests.

Variance risk premium

We calculate VRP by equation (1) i.e. . We take2 2
, 30t t t tVRP IVIX RV  

risk neutral variance by squared India VIX (transforming into its one
month variance term), which is calculated by the MFIV framework, as
proxy. We calculate ex-post realized variance by the sum of five-minute
squared returns over thirty calendar days. The NSE disseminates India
VIX in terms of annualized volatility. We square India VIX and divide
it by 12 to transform it into monthly variance. Below is the summary
statistics of  and , along with Nifty, , ,t t ttVRP VRP VRP MFIV  tRV
returns . tRNifty
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FIGURE 2.— Variance Risk Premium (VRP) plot (01Jul2015 to
31Dec2015)

Panel A shows that the mean of the variance risk premium is
significantly greater than zero; so are MFIVt and RVt. Thus, variance
risk premium exists in Indian options and this result is consistent with
Garg and Vipul (2015). Further, mean of magnitude change of variance
risk premium  is significantly greater than zero, which is not tVRP
the case for change of variance risk premium . The standard tVRP
deviation of  is less than . This shows that the magnitudetVRP tVRP
of variance risk premium change is less volatile than signed variance
risk premium change. series are significant, ,t t t tVRP VRP VRP RNifty 
after removing trend and intercept component from them. This shows
that these series are trend and intercept stationary. Panel B shows the
correlations among the variables. VRPt and RVt have strong negative
correlations. On the other hand, VRPt and MFIVt have strong positive
correlations. But MFIVt and RVt do not show significant statistical
correlations. Autocorrelation functions of VRPt, MFIVt and RVt show
that these series are strongly correlated, and all the reported five lags are
significant. We observe that VRPt maintains autocorrelations up to thirty
lags though we do not report the autocorrelation coefficients of VRPt,
MFIVt and RVt series here for brevity. ΔVRPt does not show
autocorrelation for more than one lag. Similarly,  does not showtVRP
autocorrelation for more than two lags.

Figure 1 shows the realized variance and MFIV plot for the period
1 July, 2015 to 31 December, 2015. It is observed that MFIV is
consistently higher up to mid-July, and after the month of August i.e.,
from the starting of September, 2015.
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FIGURE 3.— Change of variance risk premium (01Jul2015 to
31Dec2015)

One reason why MFIV is less than RV, especially during the month
of August 2015, could be because of the distress in the market due to the
China slowdown that affected the Indian market significantly. We plot
the VRP (variance risk premium) dynamics for the period 1 July, 2015
to 31 December, 2015 in figure 2. We observe that VRP is less than zero
during mid-July to August, 2015. This may be due to the reason stated
above. Previous studies of Bollerslev, Tauchen and Zhou (2009),
Bollerslev, Gibson and Zhou(2011), and Bekaert and Hoerova (2014)
relate the variance risk premium with the market-wide risk aversion.
Economic intuition is straight forward in case of positive variance risk
premium. But what is puzzling is the economic intuition of negative
variance risk premium. Fan, Imerman and Dai (2016) argue that the sign
of negative volatility risk premium can be related to the delta-hedged
gains or losses of volatility short portfolios.

We plot the change of variance risk premium and magnitude change
of variance risk premium in figures 3 and 4, respectively.



71Options Order Flow, Volatility Demand and Variance Risk Premium

FIGURE 4.— Change of absolute variance risk premium (01Jul2015
to 31Dec2015)

Summary statistics of main variables

Table 4, Panel A represents the correlations among main variables.
Here,  and  represent the aggregated02 03, ,t tADOI ADOI 04

tADOI
directional deamnd and  and  represent02 03, ,t tAVOI AVOI 04

tAVOI
aggregated volatility demand for category 02 (ITM call and OTM put),
category 03 (ATM call and ATM put), category 04 (OTM call and ITM
put), respectively. We observe that both  and  maintaintVRP tVRP
significant negative correlations with Nifty return .  tRNifty 04

tAVOI
has negative correlation with RNiftyt. Further,  has negative04

tAVOI
correlation with . Similarly,  maintains positivetVRP 03

tAVOI
correlation with RNiftyt and . However, these correlations aretVRP
not statistically significant. Further analysis on correlations for
individual call and put option categories are shown in Panel D. Here, we
segregate the aggregated demand of each category (02, 03, and 04) into
volatility demand components for call and put options. Category 02
consists of ITMCE and OTMPE. Here, VDOTMCEt, VDATMCEt, and
VDITMCEt represent volatility demand for OTM call, ATM call, and ITM
call options, and VDOTMPEt, VDATMPEt, and VDITMPEt represent
volatility demand for OTM put, ATM put, and ITM put options,
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respectively. We observe that volatility demand of ITM put   (VDITMPEt)
maintains negative correlations with  and RNiftyt., ,t tVRP VRP 
Further, the negative correlation is statistically significant for .tVRP
On the other hand, VDOTMCEt shows positive correlation with ,tVRP
and it is not statistically significant and lower in terms of absolute value.
So, we assume that increase in volatility demand of VDITMPEt decreases
the absolute change of variance risk premium; in turn, category 04
options negatively impacts . Both VDATMCEt and VDATMPEttVRP
maintain positive correlation with , therefore, we assume ATMtVRP
options (category 03) impacts  positively, i.e., increase intVRP
volatility demand of ATM options increases . Category 02tVRP
options (VDOTMPEt, VDITMCEt) show opposite correlations with

 and none of them is statistically significant.tVRP
Panel B shows autocorrelation function of the main variables. We

observe  has significant autocorrelations up to seven lags.  log Nifty t
Vol

We do not report the coefficients up to ten lags due to brevity.
Therefore, we choose Newey-West t-statistics with seven lags.

Panel C and Panel E shows summary statistics of the variables.
Mean of all the aggregated volatility demand components,

 and  are significantly positive. In case of02 03, ,t tAVOI AVOI 04
tAVOI

individual options, the volatility demand of the mean of all the put
option is significantly positive, whereas mean of volatility demand at
OTM and ATM call options is significantly positive. All these variables
(aggregated and individual volatility demand) are stationary.7 Next, we
discuss the pattern of the implied volatility skew for the period of study.

Implied volatility skew

We compute the Black-Scholes implied volatility skew of the options
for the period 1 July, 2015 to 31 December, 2015. We observe that
volatility skew of Nifty options form a forward skew.

The volatility skew pattern shows that OTM call options and ITM
put options are expensive. Further, we observe that ITM put options are
even more expensive than the OTM call options.

7. Note that trading volume is not stationary. We do not detrend volume following Lo
and Wang (2000). They fail to detrend the volume without adequately removing serial
correlation. Therefore, the paper advises to take shorter interval when analyzing trading
volume (typically 5 years). Our study period interval is only 6 months.
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FIGURE 5.— Implied volatility skew of Nifty options

IV.  Empirical results

In the empirical test section, we start with equation (2), where we
regress change of variance risk premium with the set of independent
variables and control variables, as mentioned in the equation
specification.

A. Empirical results (change of variance risk premium)

Table 5 reports the result of equation (2). Results show that aggregate
delta order imbalances  do not have any 02 03 04, ,t t tADOI ADOI ADOI
statistical significance on the changes of variance risk premium for
Models (2) and (3). Further, aggregate volatility demands

 do not show any statistical significance in 02 03 04, ,t t tAVOI AVOI AVOI
Model (4) except in Model (2), where  impacts change of02

tAVOI
variance risk premium negatively. Adj R2 of the models show that
Model (1) best explains the relationship, followed by Model (4). For all
the models, coefficients of aggregate delta order imbalance and
aggregate vega order imbalance maintain consistency in their signs. We
observe that coefficient of  have negative signs for all the04

tADOI
models. Similarly, coefficients of  have positive signs and03

tADOI
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coefficients of  have negative signs. Coefficients of 02
tADOI 1tVRP

have positive signs for all the models. We test whether equation (3) with
magnitude of absolute change of variance risk premium as dependent
variable can provide us better insights about the relationship. The results
of equation (3) are reported in table 6.

B. Empirical results (magnitude of variance risk premium change)

Table 6 shows the result of equation (3). The magnitude regression
improves Adj R2 for all the models. In the magnitude regression, Model
(4) best explains the relationship among all the other models.

We observe that Intercept, RNiftyt, and log(VolNifty)t do not change
their signs with absolute value change of variance risk premium. In

TABLE 5. Results of equation (2)

Variable (1) (2) (3) (4)

Intercept –0.00719* –0.0063* –0.00718* –0.00644*

(–1.96) (–1.84) (–1.90) (–1.91)
RNiftyt –0.00031*** –0.00033*** –0.00032*** –0.00031**

(–2.91) (–2.66) (–2.88) (–2.61)
log(VolNifty)t 0.00037* 0.00032* 0.000377* 0.00033*

(1.95) (1.82) (1.89) (1.90)
ADOIt

02 0.00093 0.00043
(1.49) (0.85)

ADOIt
03 –0.00135 –0.00133

(–1.66) (–1.38)
ADOIt

04 –0.00018 –0.00019
(–0.48) (–0.53)

AVOIt
02(×10–6) –0.861* –0.345

(–1.70) (–0.51)
AVOIt

03 (×10–6) 1.347 1.166
(0.96) (0.99)

AVOIt
04(×10–6) –0.489 –0.580

(–0.30) (–0.36)
ΔVRPt–1 0.2026** 0.2228** 0.2179** 0.1941**

(2.30) (2.62) (2.59) (2.16)
Adj R2 0.3549 0.3465 0.3451 0.3506
#Obs 120 120 120 120

Note:  ΔVRPt = α0+β1RNiftyt + β2 log(VolNifty)t + γ1
02ADOIt

02 + γ1
03ADOIt

03 + γ1
04ADOIt

04

+ δ1
02AVOIt

02 + δ1
03AVOIt

03 + δ1
04AVOIt

04 + θ1ΔVRPt + ε. Models (1), (2), (3), and (4) are the
GMM estimates of the variables shown in the table. t-statistics are computed according to
Newey and West (1987) with 7 lags. *,**,*** denote the statistical significance at 1%, 5%, and
10% levels respectively.
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equation (10),  and  reverse their signs. Everything04
tADOI 02

tAVOI
else maintains consistency in terms of their signs. For Model (2) and
Model (4), volatility demand of ATM options remains statistically
significant. Further, this volatility demand positively impacts the
magnitude change of variance risk premium. The reason could be that
ATM options are most sensitive to volatility change. Therefore, market
participants with volatility information would prefer to trade in ATM
options. Moreover, in table 1, we see that ATM options are the most
traded options in the list of all the categories. For all the categories of
options, it is seen that delta order imbalances do not have any impact on
change of variance risk premium, which is as per our expectation.

Coefficients of nifty returns (RNiftyt) by both equations (2) and (3),
for all the models, are consistently negative. That is as per our
expectation and consistent with the previous studies of Giot (2005),
Whaley (2009), Badshah (2013), and Chakrabarti and Kumar (2017),
which state that negative returns increase the implied volatility and that
high volatility is a representative of high risk (Hibbert, Daigler and
Dupoyet (2008); Badshah 2013). Increase in implied volatility, in turn,
increases variance risk premium; thus, Nifty returns have negative
impact on change as well as on the magnitude change of variance risk
premium.

Coefficients of logarithm volume are positive for equations (2) and
(3), for all the models as per expectation. This is because higher trading
volume implies lower volatility (Bessembinder and Seguin, 1992) and
lower volatility, in turn, lowers the magnitude of variance risk premium.

Table 6 shows that volatility demand of ATM options has significant
positive impact on the magnitude of variance risk premium change. 
Comparison between table 5 and table 6 reveal that volatility demand
information of ATM options does indeed contain information of
absolute change; however, it but does not contain any significant
information about the signed change of variance risk premium. From the
analysis of table 5 and table 6, it is evident that equation (3) better
describes the relationship between magnitude of variance risk premium
and volatility demand of options. It is apparent that the sign of the
variance risk premium change introduces additional noise, which makes
the explanation difficult. With the magnitude of variance risk premium
change as dependent variable, the statistical clarity of the data increases.
We further regress magnitude of variance risk premium change with the
volatility demand of individual call and put options.
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C. Empirical results (Sign test)

We test hypothesis 2 by equation (4) and report the result in table 7.
According to the hypothesis, sign of variance risk premium change
should indicate expectation about the change of realized volatility. We
expect a positive coefficient of sign(ΔVRPt), because if the hypothesis
holds true, a positive (negative) sign should indicate increase (decrease)
in realized volatility. Results of table 8 shows that coefficient of
sign(ΔVRPt) is positive and statistically significant at the 10% level.
This result confirms hypothesis 2 and is consistent with the evidence of
Fan, Imerman and Dai (2016).

D. Further investigations

Further investigation is conducted to understand how the volatility
demand of call and put options of various moneyness (OTM, ATM, and
ITM) is affecting the magnitude of the change of the variance risk
premium. The following empirical equation (5) is specified to estimate
the impact.

(5)
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TABLE 7. Results of equation (4)

Variable (1)

Intercept 0.000052*

(1.74)
ΔRVt 0.000029*

(1.82)
Adj R2 0.0161
#Obs 120

Note:  ΔRVt  = α0 + α1 sign(ΔVRPt) + ε. Model (1) is the GMM estimates of the variables
s`hown in table. t-statistics are computed according to Newey and West (1987) with 30 lags.
*,**,*** denote the statistical significance at 1%, 5%, and 10% levels respectively.
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VDOTMCEt, VDATMCEt, and VDITMCEt represent the volatility demand
of OTM, ATM, and ITM call options, respectively. Similarly, VDOTMPEt,
VDATMPEt, and VDITMPEt represent the volatility demand of OTM,
ATM, and ITM put options, respectively. We report the results of the
regression in table 8. Results show that Adj R2 of the model increases
with volatility demand components of call and put options. Further, we
observe that while volatility demand at ATM and ITM put options is
statistically significant it is insignificant for call options. Volatility
demand of ATM put options has a positive impact whereas, ITM put
options have negative impact on the magnitude of variance risk
premium change. The sign of the impact is evident from the correlation
analysis in table 4, where volatility demand at ITM put options
maintains negative correlation while ATM put options maintain a

TABLE 8. Results of equation (5)

Variable (1)

Intercept –0.00762**

(–2.22)
RNiftyt –0.00024**

(–2.41)
log(VolNifty)t 0.00041**

(2.15)
VDOTMCEt(×10–6) –0.869

 (–0.85)
VDATMCEt(×10–6) 0.834

(0.94)
VDITMCEt(×10–6) 0.791

(0.75)
VDOTMPEt(×10–6) 0.274

(0.79)
VDATMPEt(×10–6) 1.81*

(1.81)
VDITMPEt(×10–6) –6.74***

(–2.92)
|ΔVRPt–1| 0.3034***

(2.66)
Adj R2 0.4489
#Obs 120

Note:  |ΔVRPt| = α0 + β1RNiftyt + β2 log(VolNifty)t + COTM VDOTMCEt + CATM VDATMCEt +
CITM VDITMCEt + POTM VDOTMPEt + PATM VDATMPEt + PITM VDITMPEt + θ1 |ΔVRPt–1| + ε. Model
(1) is the GMM estimates of the variables shown in the Table. t-statistics are computed
according to Newey and West (1987) with 7 lags. *,**,*** denote the statistical significance at
1%, 5%, and 10% levels respectively.
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positive correlation with magnitude of variance risk premium change.
Another support for the evidence is the volatility skew pattern for the
period of study. ATM and ITM put options are expensive relative to
other put options. So volatility trading activity at ATM and ITM put
options may have an impact on the magnitude of variance risk premium.

V.  Robustness tests

We conduct series of robustness tests of the results. In the first
robustness test, we compute the order imbalance as value of the orders,
i.e., quantity is multiplied by the price.  In equations (3) and (4), the
order imbalance is simply computed as the difference between the
numbers of buy and sell orders of the first hundred best orders standing
in the order-book for execution. In the robustness test, the order
imbalance is computed as the value of the buy and sell orders of the first
hundred best orders standing in the order-book for execution. We
estimate equation (4) in the robustness test considering order imbalance
in terms of value (i.e. price*quantity). The result is reported in table 9.

Further, in the second robustness test, empirical investigation
considers daily change of volatility risk premium (vrp) instead of daily
change of variance risk premium (VRP), as the dependent variable.
Volatility is the nonlinear monotone transform of variance. For the
robustness of results, we specify daily signed change and daily absolute
change of volatility risk premium as the dependent variables. We define
volatility risk premium as, , where realized, 30t t t tvrp IVIX RV  
volatility is calculated by the square root of sum of five-minute squared
returns over thirty calendar days. Risk-neutral volatility is calculated by
the India VIX value and appropriately transforming the model-free
implied volatility into thirty calendar day volatility, since India VIX is
disseminated in annualized terms.

The regression equations specified for the tests are given below.

(6)
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Equation (5) examines the impact of volatility demand on the daily
signed change of the volatility risk premium (Δvrpt). In order to
understand whether absolute change of volatility risk premium (|Δvrpt|)
contains information different than the signed change of volatility risk
premium (Δvrpt), we estimate equation (6). These specifications are the
same as equations (2) and (4), where the dependent variable is
(absolute) change of variance risk premium instead of volatility risk
premium.

TABLE 9. Table shows the results of equation (3) where order imbalance is
computed by value (price*quantity)

Variable (1) (2) (3) (4)

Intercept –0.0076** –0.00746** –0.00731** –0.00777**

(–2.11) (–2.15) (–2.11) (–2.09)
RNiftyt –0.00021** –0.00022** –0.00022** –0.00022**

(–2.27) (–2.36) (–2.33) (–2.37)
log(VolNifty)t 0.00041** 0.00040** 0.00039** 0.00042**

(2.15) (2.20) (2.15) (2.14)
ADOIt

02 0.000007 0.000075
(0.03) (0.38)

ADOIt
03 –0.00059 –0.0009

(–0.97) (–1.46)
ADOIt

04 0.000019 0.000032
(0.20) (0.29)

AVOIt
02(×10–6) 0.584 0.581

(0.95) (1.25)
AVOIt

03 (×10–6) 0.809 0.925**

(1.53) (2.44)
AVOIt

04 (×10–6) –1.97* –2.11**

(–2.21) (–2.05)
ΔVRP(t–1) 0.3710*** 0.3333** 0.3720*** 0.3292***

(2.83) (2.62) (2.83) (2.65)
Adj R2 0.4241 0.4242 0.4186 0.4357
#Obs 120 120 120 120

Note:  |ΔVRPt| = α0 + β1RNiftyt + β2 log(VolNifty)t + γ1
02ADOIt

02 + γ1
03ADOIt

03 + γ1
04ADOIt

04

+ δ1
02AVOIt

02 + δ1
03AVOIt

03 + δ1
04AVOIt

04 + θ1 |ΔVRP(t–1)| + ε. Models (1), (2), (3), and (4) are
the GMM estimates of the variables shown in the table. t–statistics are computed according
to Newey and West (1987) with 7 lags. *,**,*** denote the statistical significance at 1%, 5%,
and 10% levels respectively. Here we calculate order imbalance by value (price*quantity).
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(7)
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Equations (6) and (7) are estimated considering the order imbalance
in terms of value (i.e. price*quantity). The results are reported in the
tables 10 and 11.

In the third robustness test, we estimate equation (7) i.e. impact of
volatility demand of call and put options of various moneyness on the

TABLE 10. Table shows the results of equation (6)

Variable (1) (2) (3) (4)

Intercept –0.04996 –0.03114 –0.04255 –0.04063
(–1.55) (–1.11) (–1.35) (–1.32)

RNiftyt –0.00201*** –0.00216*** –0.0021*** –0.00201**

(–3.00) (–2.93) (–3.21) (–2.53)
log(VolNifty)t 0.00263 0.00161 0.00223 0.00213

(1.54) (1.08) (1.33) (1.31)
ADOIt

02 –0.0018 –0.00156
(–0.49) (–0.52)

ADOIt
03 –0.00642 –0.00667

(–1.06) (–1.34)
ADOIt

04 –0.00131 –0.00081
(–0.99) (–0.59)

AVOIt
02(×10–6) 1.44 –2.14

(0.15) (–0.35)
AVOIt

03 (×10–6) –2.5 0.0956
(–0.42) (0.03)

AVOIt
04(×10–6) –20 –20

(–1.38) (–1.06)
ΔVolatilityRPt–1 0.2381*** 0.2034** 0.2335*** 0.21386**

(2.85) (2.42) (2.76) (2.60)
Adj R2 0.2851 0.2843 0.2857 0.2819
#Obs 120 120 120 120

Note:  Δvrpt = α0 + β1RNiftyt + β2 log(VolNifty)t + γ1
02ADOIt

02 + γ1
03ADOIt

03 + γ1
04ADOIt

04

+ δ1
02AVOIt

02 + δ1
03AVOIt

03 + δ1
04AVOIt

04 + θ1Δvrpt + ε. Models (1), (2), (3), and (4) are the
GMM estimates of the variables shown in the table. t-statistics are computed according to
Newey and West (1987) with 7 lags. *,**,*** denote the statistical significance at 1%, 5%, and
10% levels respectively. We calculate order imbalance by value (price*quantity).
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volatility risk premium by considering the order imbalance in terms of
value (i.e. price*quantity). The result is reported in table 12.

In table 9, it is observed that estimates are consistent, with no
meaningful change in the result. The interpretation of tables 6 and 9
remains the same. Therefore, the computational procedure of order
imbalance does not change the interpretation of the result. When change
(absolute change) of volatility risk premium is estimated by equations
(6) and (7), it is observed that results are mostly consistent with the
change (absolute) in variance risk premium. Tables 10 and 11 show that
volatility demand impacts both the variance and volatility risk premium.
Even the results are consistent with the change of computational
procedure of order imbalance.  Thus, the results of the magnitude of the
volatility risk premium change are consistent with those of magnitude

TABLE 11. Table shows the results of equation (7)

Variable (1) (2) (3) (4)

Intercept –0.058* –0.05507* –0.05834 –0.05363*

(–1.72) (–1.82) (–1.76) (–1.73)
RNiftyt –0.00129** –0.00137** –0.00136** –0.00136**

(–2.19) (–2.16) (–2.24) (–2.22)
log(VolNifty)t 0.00315* 0.00303* 0.00318* 0.00294*

(1.77) (1.88) (1.81) (1.79)
ADOIt

02 0.00116 0.00119
(0.47) (0.67)

ADOIt
03 –0.00431 –0.00727

(–0.93) (–1.46)
ADOIt

04 0.00077 0.00101
(0.70) (0.78)

AVOIt
02(×10–6) 2.51 4.34

(0.41) (0.84)
AVOIt

03 (×10 –6) 6.435 6.675**

(1.54) (2.29)
AVOIt

04(×10–6) –20 –20*

(–1.62) (–1.67)
|ΔVolatilityRPt–1| 0.2447* 0.1852 0.2357 0.1894

(1.69) (1.40) (1.62) (1.52)
Adj R2 0.2510 0.2637 0.2499 0.2742
#Obs 120 120 120 120

Note:  |Δvrpt| = α0 + β1RNiftyt + β2 log(VolNifty)t + γ1
02ADOIt

02 + γ1
03ADOIt

03 + γ1
04ADOIt

04

+ δ1
02AVOIt

02 + δ1
03AVOIt

03 + δ1
04AVOIt

04 + θ1|Δvrpt| + ε. Models (1), (2), (3), and (4) are the
GMM estimates of the variables shown in the table. t-statistics are computed according to
Newey and West (1987) with 7 lags. *,**,*** denote the statistical significance at 1%, 5%, and
10% levels respectively. We calculate order imbalance by value (price*quantity).
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of variance risk premium change throughout. Again, with change of
order, imbalance does not affect the meaning of the impact of volatility
demand of the call and put options of various moneyness on the
volatility risk premium.

Volatility is non-linear monotone transformation of variance. Thus,
we also estimate the coefficients with change (absolute change) of
volatility risk premium. Results are reported in tables 10, 11 and 12. We
observe that the results are mostly consistent when we estimate
coefficients by taking change of volatility risk premium. No meaningful
change is observed. When we estimate coefficients with the magnitude

TABLE 12. Table shows the result of the impact of volatility demand on volatility
risk premium where order imbalance is computed by value
(price*quantity)

Variable (1)

Intercept –0.05128*

(–1.84)
RNiftyt –0.0014*

(–1.96)
log(VolNifty)t 0.002819*

(1.90)
VDOTMCEt(×10–6) –0.00002

(–0.68)
VDATMCEt(×10–6) 0.2033

(0.02)
VDITMCEt(×10–6) 2.848

(0.48)
VDOTMPEt(×10–6) 9.85*

(1.68)
VDATMPEt(×10–6) 8.103*

(1.79)
VDITMPEt(×10–6) –30**

(–2.72)
|ΔVolatilityRPt–1| 0.176946

(1.43)
Adj R2 0.2651
#Obs 120

Note: Table shows the results of equation |Δvrpt| = α0 + β1RNiftyt + β2 log(VolNifty)t + COTM
VDOTMCEt + CATM VDATMCEt + CITM VDITMCEt + POTM VDOTMPEt + PATM VDATMPEt + PITM
VDITMPEt + θ1 |Δvrpt–1| + ε. Model (1) is the GMM estimates of the variables shown in the
table. t-statistics are computed according to Newey and West (1987) with 7 lags. *,**,***

denote the statistical significance at 1%, 5%, and 10% levels respectively. We calculate order
imbalance by value (price*quantity).
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of the volatility risk premium change, results are consistent with those
of magnitude of variance risk premium change throughout, other than
magnitude of the estimated coefficients.

These robustness tests confirm Hypothesis H1, i.e., change in net
volatility demand influences the change in variance risk premium.

VI.  Conclusion

In this paper, we investigate whether volatility demand of options
impacts the magnitude of variance risk premium change. We further
investigate whether the sign of variance risk premium change conveys
information about realized volatility innovations. We calculate
aggregated volatility demand by vega-weighted order imbalance.
Further, we classify aggregated volatility demand of options into
different moneyness categories. 

Analysis shows that aggregated volatility demand of options
significantly impacts the magnitude of variance risk premium change.
We explore the nature of impact for different moneyness categories.
Results show that aggregated volatility demand at ATM options
positively impacts variance risk premium. Further, we analyse the
impact of volatility demand of call and put options on magnitude of
variance risk premium change. We find that volatility demand of ATM
and ITM put options significantly impacts the variance risk premium
change. Volatility skew pattern (for the period of study) supports this
finding, as ATM and ITM put options remain expensive for the period
of study. We conduct several robustness tests of our results. These test
results show that findings of the study are also consistent with volatility
risk premium.

We find that the sign of variance risk premium change conveys
information about realized volatility innovations. Positive (negative)
sign of variance risk premium change indicates positive (negative)
realized volatility innovation.

Thus, the study concludes that the volatility demand information in
options order flow impacts the volatility/variance risk premium, while
nature and degree of the impact depend on the market structure.

Accepted by:  Prof. G. Koutmos, Guest Editor, April 2018
 Prof. P. Theodossiou, Editor-in-Chief, April 2018
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