
1

Dynamic Autocorrelation and
International Portfolio Allocation

Jyri Kinnunen*
Hanken School of Economics & LocalTapiola Asset Management, Finland

Minna Martikainen**
Hanken School of Economics, Finland

We explore the relevance of dynamic autocorrelation in modeling expected
returns and allocating funds between developed and emerging stock markets.
Using stock market data for the US and Latin America, we find that
autocorrelation in monthly returns vary with conditional volatility, implying
some investors implement feedback trading strategies. Dynamic autocorrelation
models fit the data considerably better than a conditional version of the
zero-beta CAPM, while differences between models with an autoregressive term
are modest. Investors can improve their portfolio optimization between
developed and emerging stock markets by considering time-varying
autocorrelation. The most drastic difference in portfolio performance is not due
to allowing autocorrelation to vary over time, but realizing that stock returns are
autocorrelated, especially in emerging stock markets. (JEL: G11, G12, G15)

Keywords: autocorrelation; volatility; portfolio; international; emerging
markets

Article history: Received: 29 September 2017, Received in final revised
form: 11 June 2018, Accepted: 19 June 2018, Available
online: 24 September 2018

*  Corresponding author: Jyri Kinnunen, Hanken School of Economics, P.O. Box 479,
00101 Helsinki, Finland, and LocalTapiola Asset Management, Espoo, Finland. E-mail
address: jyri.kinnunen@hanken.fi. ** Minna Martikainen, Hanken School of Economics, P.O.
Box 479, 00101 Helsinki, Finland. E-mail address: minna.martikainen@hanken.fi.

(Multinational Finance Journal, 2017, vol. 21, no. 1, pp. 21–48)
© Multinational Finance Society, a nonprofit corporation.  All rights reserved.



Multinational Finance Journal22

I.  Introduction

The intertemporal trade-off between expected return and risk (Merton,
1973) has attracted enormous interest in the empirical finance literature
(see Brand and Wang, 2010; Nyberg, 2012, Ghysels et al., 2014). The
contemporaneous role of dynamic autocorrelation in driving expected
returns has received less attention, especially in practical applications.
In this study, we explore the relevance of the risk-return trade-off and
time-varying autocorrelation in modeling expected returns and
allocating funds between developed and emerging stock markets.

The traditional view on market efficiency says past returns should
not contain relevant pricing information if the asset-pricing model is
correct and the financial market is efficient. In practice, past returns
often help to forecast stock returns along a conditional risk-return
trade-off (Bollerslev et al., 1988; Ghysels et al., 2005; Kinnunen 2014).
Heterogeneous agent explanations for autocorrelation include the
Sentana-Wadhwani (SW) feedback trading model (Sentana and
Wadhwani, 1992). In the presence of investors whose demand for shares
is based on past price changes, both a conditional risk-return trade-off
and autocorrelation that varies with volatility can cause predictability
in returns.1 Sentana and Wadhwani (1992) and Koutmos (1997a) report
empirical support for the SW model in developed stock markets,
whereas Koutmos and Saidi (2001) find similar support in emerging
stock markets. Models that incorporate feedback trading have been also
studied by Cutler et al. (1990) and DeLong et al. (1990), among others.
We use the SW model as the benchmark autocorrelation model. As an
alternative model, we consider the exponential autoregressive model
with volatility of LeBaron (1992). This model has been applied by Chen
et al. (2008) and Koutmos (1997b) to investigate autocorrelation
patterns in the US and Asian stock returns, respectively.

Earlier studies do not compare the performance of the SW model
against traditional asset-pricing models or alternative models with
time-varying autocorrelation. This would be essential if one wishes to
evaluate how well the SW model and other dynamic autocorrelation
models perform in modeling expected stock returns. Moreover, there are
various explanations for autocorrelation in stock returns (see Campbell

1. There are various explanations for autocorrelation in stock returns (for an overview,
see Campbell et al. 1997). Explanations range from spurious autocorrelation caused by
nonsynchronous trading (see Lo and MacKinlay, 1990) to autocorrelation caused by an
interplay between conditional mean and variance process (Hong, 1991).



23Dynamic Autocorrelation and International Portfolio Allocation

et al., 1997). These explanations range from spurious autocorrelation
caused by nonsynchronous trading (Lo and MacKinlay, 1990) to
autocorrelation caused by an interplay between conditional mean and
variance process (Hong, 1991). Since most studies investigate dynamic
autocorrelation patterns using hourly, daily or weekly data, it is difficult
to distinguish between autocorrelation induced by nonsynchronous
trading and autocorrelation due to heterogeneous agents and other
economic explanations. In addition, the relevance of time-varying
autocorrelation in empirical applications such as portfolio optimization
also remains unexplored.

This study has three overarching goals. First, we examine
simultaneously the effect of conditional volatility on autocorrelation
patterns of the US and Latin American stock market returns.2
Autocorrelation in monthly returns is found to vary with volatility as
suggested by the SW model. This comports with the findings of Sentana
and Wadhwani (1992), Koutmos (1997a), Koutmos and Saidi (2001),
Bohl and Siklos (2008), and Kinnunen (2014), who report similar
behavior in daily returns for both emerging and developed stock
markets. As we employ monthly returns, the finding strengthens the
view that autocorrelation is caused by heterogeneous agents rather than
nonsynchronous trading, which can cause spurious autocorrelation in
daily returns but is unlikely to be a serious problem in monthly stock
index returns. Harvey (1995) notes the serial correlation observed in
emerging market returns is usually higher than that found in developed
markets. Our results agree with this view: time-varying autocorrelation
in the Latin America stock portfolio return is usually higher than in the
US aggregate market return. This finding agrees with the results
reported by Kinnunen (2013; 2014), among others.

We also extend earlier analyses by controlling our results against the
influence of global factors. Autocorrelation in unadjusted returns may
reflect time-varying risk premia (Anderson, 2011). Previous
autocorrelation studies seldom control their results for increased
financial integration between world capital markets. Roll and
Pukthuanthong (2009), however, report evidence on increased market
integration, implying that the earlier results on dynamic autocorrelation

2. DeSantis and Imrohoroglu (1997) find support for a regional and global risk-return
relation in Latin America, while simultaneously reporting significant time-invariant
autocorrelations in stock index returns and rejecting full segmentation at country-level. Thus,
in addition to its size and colorful economic history, Latin America appears to be an ideal
emerging market area to investigate simultaneously the risk-return trade-off and time-varying
autocorrelation in returns.
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may be partly driven by omitted global pricing factors. We find that
global stock market return and changes in the oil price have little
explanatory power for expected returns in addition to a local risk-return
trade-off and a first-lag autoregressive term that varies with volatility.

Second, the performance of the SW model in explaining expected
returns is evaluated against the zero-beta CAPM and the exponential
autoregressive model with volatility proposed by LeBaron (1992). The
latter model can be economically motivated by the adaptive market
hypothesis of Lo (2004). The SW model performs considerably better
than a conditional version of the zero-beta CAPM. This suggests that
heterogeneous agent models offer a more realistic representation of
stock returns than models assuming a single representative investor.3

However, differences in performance between models with a first-order
autoregressive term are modest. The gain from accounting for
time-varying autocorrelation on a model’s performance in explaining
monthly returns is small. This result is related, at least partly, to the
monthly return interval used. The long interval makes it easier to
distinguish nonsynchronous trading from feedback trading, but weakens
the level of time-varying autocorrelation in returns.

Third, the relevance of dynamic return autocorrelation in
international portfolio optimization is studied. Previous authors have
found, for example, that intertemporal hedging demands as well as
regime-switches in financial ratios and market conditions can be useful
in asset allocation (Brooks and Persand, 2001; Ang and Bekaert, 2002;
Gerard and Wu, 2006). Recently, DeMiguel et al. (2014) use a
vector-autoregressive (VAR) model and find that taking serial
dependence in portfolio-level US returns into account can improve
portfolio performance. We find that noticing time-varying
autocorrelation in modeling expected returns can improve an investor’s
portfolio allocation between a developed and emerging stock market in
the cases of a global minimum variance portfolio and a tangency
portfolio when a risk-free asset exists and short sales are restricted. The
first case measures the indirect effect of time-varying autocorrelation
via forecasting errors’ effect on the conditional covariance matrix. The
second case additionally measures the effect of dynamic autocorrelation
that comes directly through expected returns. Ignoring autocorrelation
completely appears to cause a considerable underperformance of a

3. For a survey on heterogeneous models in economics and finance, see Hommes (2006)
and Manzan (2009).
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portfolio. It may also lead to over-investment in an emerging market.4
The rest of this study is organized as follows. In Section II, we

discuss the SW model and the exponential autoregressive model with
volatility. Section III contains data description. Section IV presents the
empirical results, robustness tests against global factors, and portfolio
performance evaluations. The final section summarizes.

II.  Autoregressive models with volatility

Α. Feedback trading model

In the SW model (Sentana and Wadhwani, 1992), feedback trading
causes the serial correlation in stock returns. The model is based on a
heterogeneous agent assumption with two groups of investors (see also
Shiller, 1984). The first investor group’s demand for shares is based on
risk-return considerations. Let and denote the conditionally 1t tE R

2
t

expected return and its conditional variance at time t, both conditional
on the information set available to investors at time t–1. The fraction of
shares demanded by the first group is given as

, where α is the return at which the demand   2
1 1t t t tQ E R   

is zero. The denominator is the risk premium required by the first group
of investors to hold all shares. Here, we assume that the first group is
risk averse, so λ > 0. If the expected return increases or the required risk
premium decreases, the first group demands a greater portion of all
shares.

The second group of investors exercises feedback trading. Their
demand is given as . A positive feedback strategy 2 1t tQ R   0 
means that investors buy (sell) after price increases (decreases). As
discussed by Sentana and Wadhwani (1992), such behavior agrees with
portfolio insurers and those using stop-loss orders. In contrast, a
negative feedback strategy  implies that investors buy after price 0 
declines, which is consistent with the behavior of those investors
following ‘buy low/sell high’ strategies.5 In equilibrium, all shares are

4. Autocorrelation in returns can have important implications in various financial
applications such as beta estimations (Scholes and Williams, 1977) and derivatives pricing
(Jokivuolle, 1998).

5. Some investors may follow positive feedback trading strategies and some implement
negative feedback trading. Because γ incorporates the impact of both positive and negative
feedback traders, γ > 0 (γ < 0) implies that the impact of positive (negative) feedback trading
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held and it holds that . This yields the SW model:1 2 1t tQ Q 

. (1)  2 2
1 1t t t t tE R R     

The last term on the right side implies that returns will exhibit
negative (positive) autocorrelation if the second investor group follows
a positive (negative) feedback trading strategy. The autoregressive term
varies with conditional volatility. Expected return in eq. (1) can be
time-varying and predictable due to the time-varying risk premium
and/or because of the first-order autoregressive component. We use eq.
(1) as the benchmark autocorrelation model.

If the first group demand all shares  and α is set equal to the 1 1tQ 
risk-free rate, the model yields a discrete-time approximation of the
intertemporal CAPM (ICAPM) of Merton (1973; 1980). If the risk-free
asset does not exist, eq. (1) without the time-varying autoregressive term
can be interpreted as a conditional version of Black’s (1972) zero-beta
CAPM, which we use as the benchmark asset-pricing model. As the
second traditional model, we consider the conditional zero-beta CAPM
with a constant first-order autoregressive coefficient. In the asset-pricing
literature, a constant autoregressive term along the risk-return trade-off
is usually motivated by nonsynchronous trading (e.g., Nelson, 1991;
DeSantis and Imrohoroglu, 1997) or as a test of whether lagged returns
have predictability ability along a conditional asset-pricing model (e.g.,
Bollerslev et al. 1988; Ghysels et al., 2005). Somewhat surprisingly,
asset-pricing studies often completely ignore the potential explanatory
power of lagged returns.

After replacing the conditionally expected return by the realized
return and an error term, an empirical bivariate version of eq. (1) can be
tested by the following system of equations

(2)
 

 

, , 0 1 , , 1 ,

, , 0 1 , , 1 ,

US t US US USUS t US US USUS t US t US t

LA t LA LA LALA t LA LA LALA t LA t LA t

R h h R

R h h R

    

    





    

    

where US = United States, LA = Latin America, and  is the iith,ii th
element of the 2 x 2 conditional covariance matrix of the error terms Ht.
Following Merton’s (1980) suggestions, we model risk-return
coefficients in eq. (2) as an exponential function . This expi i 

is stronger than the impact of negative (positive) feedback trading.
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restricts the risk premium demanded by the first group of investors to be
positive. In the language of international asset pricing, eq. (2) assumes
a country-level risk-return trade-off for the US stock market and a
regional risk-return trade-off for the Latin American stock market.6

B. Exponential autoregressive model with volatility

As an alternative to eq. (2), we consider the work of LeBaron (1992),
who allows the first-order autocorrelation to vary using the exponential
autoregressive model with volatility:

. (3)
  

  

, 0 1 , , 1 ,

, 0 1 , , 1 ,

exp

exp

US t US US US USUS t US US t US t

LA t LA LA LA LALA t LA LA t LA t

R h b R

R h b R

   

   





    

    

The second term in brackets induces time variation in the first-order
autoregressive coefficient. Following LeBaron (1992), in empirical
estimations,  are set equal to sample variances of returns to avoidib s
problems with numerical optimization. During high variance periods,
the first-order autoregressive coefficient is given mainly by .0i
Notably, in theory, if , an equation for series i reduces to an,ii th bi 
autoregressive model of order 1. During periods of low variance, the
first-order autocorrelation is close to .0 1i i 

Eq. (3) can be economically motivated by the adaptive market
hypothesis of Lo (2004). The traditional view on market efficiency
implies that if markets are weak-form efficient, predictability using
historical prices should be at an economically insignificant level (Fama,
1970). Under the AMH, investors constantly adapt to changing market
conditions with satisfactory (rather than optimal) behavior, which can
cause dynamic return predictability.7 Kim et al. (2011) analyze the US
stock market and find empirically support for the AMH. Since volatility
reflects changes in market conditions, eq. (3) can capture time-varying
return predictability in the way that the AMH indicates it should
manifest itself. Specifically, returns can be predictable under certain
market conditions, while unpredictable otherwise. Kinnunen (2014)
discusses this idea in detail.

6. DeSantis and Imrohoroglu (1997) present empirical evidence for a regional
risk-return trade-off in Latin America.

7. Note that the ICAPM also allows dynamic return predictability due to changing
market conditions. 
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C. Estimation and GARCH parameterization

The innovation vector  is assumed to be conditionally , ,,t US t LA t   
normally distributed,

. (4) 1 ~ 0,t t tZ N H 

The conditional covariance matrix Ht follows the BEKK model of Engle
and Kroner (1995):

, (5)1 1 1t t t tH C C A A B H B        

where C is a 2 x 2 upper triangular matrix, and A and B are 2 x 2
parameter matrices. Asset-pricing models such as the conditional
CAPM do not impose any restrictions on the dynamics of the
conditional second moments.8 The parameterization (5) reflects
recommendations of Bollerslev et al. (1988), who state based on their
results that any correctly specified intertemporal asset-pricing model
should account for the heteroscedastic nature of asset returns. More
precisely, GARCH models are able to capture some typical features
found in financial data, e.g. leptokurtic distribution and volatility
clustering.9

All parameters are estimated simultaneously using maximum
likelihood.10 Since financial time series often violate the normality
assumption, we follow standard practice and estimate all models using
the quasi-maximum likelihood (QML) approach of Bollerslev and
Wooldridge (1992). Statistical inferences are made using robust QML
standard errors and Wald statistics.

III.  Data

Monthly returns on the US and Latin America aggregate stock market

8. Eq. (1) implies that the expected return is related to the conditional variance of Rt.
In equation (2), the conditional variance of εit enters into the conditional mean equation
instead. However, since it holds that Var[Rit|Rit–1, Rit–2…] = Var[εit|εit–1, εit–2…], modeling the
conditional variance of εit will give a model for the conditional variance of the return on
country i as well.

9. For a recent survey on multivariate GARCH modeling, see Bauwens et al. (2006).

10. The numerical maximization is done with WinRATS (version 7.0) using the BFGS
optimization algorithm.
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portfolios are used as the test assets. The data for Latin America area
has several useful features: it includes Brazil (BRIC country) and the
region has undergone several major economic events (e.g. the Argentine
economic crisis that began in 1999). The latter feature implies that the
return generating process has changed over time, suggesting that
dynamic autocorrelation models may fit the data better than traditional
models. Moreover, DeSantis and Imrohoroglu (1997) find support for
both regional and global risk-return trade-off in the Latin American
stock market, while simultaneously reporting significant time-invariant
autocorrelations in stock index returns and rejecting full segmentation
at country-level. Thus, Latin America should nicely demonstrate the
relevance of the risk-return trade-off and dynamic return autocorrelation
and the potential effect of omitted global factors.

We proxy the stock market performance using the Thomson
Datastream equity market indices with dividends reinvested. The indices
are value-weighted. All returns are expressed in US dollars and
percentage form. The sample period is from January 1995 to January
2012 (205 observations). Financial markets in many Latin America
countries opened for foreign investors around 1990, implying that the
sample covers the period under which regional integration is a plausible
assumption.11

Table 1 presents descriptive statistics. Monthly mean return for the
US stock portfolio is 0.821%, whereas the Latin America stock portfolio
has earned on average 1.101% per month. Standard deviations are
4.959% and 7.968% for the US and Latin America return series,
respectively. As one would expect, the emerging stock market offered
a higher average return than the developed stock market, but the returns
simultaneously carry increased uncertainty (measured by a higher
standard deviation). Both series exhibit significant negative skewness
and positive excess kurtosis. In both cases, the Jarque-Bera test rejects
the null of unconditional normality, indicating that the QML approach
is appropriate.

The Latin America stock return series exhibit positive first-lag
autocorrelation, whereas all autocorrelation coefficients for the US
return series are statistically insignificant. This finding agrees with
Harvey (1995), who mentions that autocorrelations in emerging markets

11. For more details, see DeSantis and Imrohoroglu (1997). The DS Latin America
equity index is available from July 1994. The DS Latin America equity index includes the
following countries: Brazil, Argentina, Colombia, Mexico, Chile, Venezuela, and Peru. In
terms of nominal gross-domestic product, Brazil is the largest economy in Latin America. The
size of economy and the levels of economic complexity vary across countries in Latin
America. 
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can be expected to be higher than those observed in developed stock
markets. Engle’s (1982) Lagrange multiplier (LM) test of order 12
shows that the ARCH effects are present. Therefore, the GARCH
models are appropriate for the data.

IV.  Empirical Results

A. Model estimates

Table 2 shows QML estimates of the mean parameters for the SW
model and its alternatives. The lower part of the table shows robust
Wald statistics, information on model fit, and diagnostic statistics on
standardized residuals. For every specification, the first column shows
estimates for the US return series. The second column shows
corresponding results for the Latin America (LA) return series. The
conditional zero-beta CAPM with and without the time-invariant
first-order autoregressive term are both restricted forms of the SW
model. In the first case, ρ1US = ρ1LA = 0. The second case results if ρ1US
= ρ1LA = ρ0US = ρ0LA = 0.

For the SW model, the obtained point estimates for ρ0is are

TABLE 1. Descriptive statistics

US stock portfolio Latin America

Mean (%) 0.821 1.101
Std.dev (%) 4.959 7.968
Skewness –0.555 –0.458
Excess kurtosis 1.420 1.116
J-Ba  (p-value) <0.001 <0.001
ρ1 0.077 0.175*
ρ2 –0.065 0.054
ρ3 0.097 –0.014
ρ12 0.081 –0.026
Q(12)b  (p-value) 0.502 0.560
ARCH LMc (12) (p-value) <0.001 0.026

Note:  Monthly data is from January 1995 to January 2012 (205 observations). Returns
are value-weighted total returns on the US and Latin America aggregate stock portfolios
(approximated by the Thomson Datastream equity indices). All returns are in percentage form
and US dollars. All data is from Thomson Datastream. a  p-values for the Jarque-Bera test
statistic for normality. b p-values for the Ljung-Box test statistic of order 12. c p-values for
Engle’s (1982) Lagrange multiplier test statistic of order 12 for ARCH effects. * denotes
significance at the 5% level (reported for autocorrelation coefficients).



31Dynamic Autocorrelation and International Portfolio Allocation

significant, positive, and considerable in magnitude. In addition, the
point estimates for the parameters that allow return autocorrelation to
vary with volatility are statistically significant and negative for both
series. This implies that the level of the first-order autocorrelation is
negatively related to volatility. These conclusions are further supported
by the Wald statistics. The joint null hypotheses of zero autoregressive
coefficients and time-invariant autocorrelation are both rejected. The
evidence on the presence of dynamic autocorrelation agrees with
Sentana and Wadhwani (1992) and Koutmos (1997a). 

Figure 1 visualizes the estimated time-varying first-order
autoregressive coefficients obtained using the SW model. The plot
reveals that autocorrelation in returns on the US and Latin America
aggregate stock portfolios are clearly time-varying and mostly positive.
The level of the estimated first-order autoregressive coefficients is
generally higher for the Latin America return series. This agrees with
Harvey (1995), who mentions that the serial correlation observed in
emerging market returns is higher than that found in developed markets.
The finding also comports with the empirical results of Bohl and Siklos
(2008) and Kinnunen (2013; 2014).

Since  in eq. (1) is modeled as  and the2
  2

0 1 t  
risk-return coefficient λ > 0, the plot shows that to produce the
estimated positive autoregressive coefficients feedback traders must
mostly follow a negative feedback trading strategy (γ < 0) in both
markets. Negative feedback trading behavior suggests investors are
following ‘buy low/sell high’ strategies. Interestingly, around 2009,
when financial markets were in volatile stage due to the global financial
crisis, the estimated autoregressive coefficients switch to negative. This
indicates that investors started to follow a positive feedback strategy (γ
> 0), i.e. behavior typical of portfolio insurers and those using stop-loss
orders. In other words, feedback traders switched their trading strategy
during the volatile aftermath of the recent global financial crisis. In the
empirical formulation, the negative estimates for ρ1i allow positive
feedback trading to offset negative feedback trading during high
volatility periods. Note that during these periods, the risk premium
demanded by smart money investors increases and simultaneously
lowers their demand for shares.

Based on the Akaike information criteria, the time-varying
autoregressive component of the SW model does not significantly affect
the performance of the model: the conditional zero-beta CAPM with the
time-invariant first-order autoregressive term performs nearly as well as
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FIGURE 1.— Time-varying autoregressive coefficients
Note: The figure shows plots of the estimated time-varying autoregressive coefficients for the
US and Latin America return series. Estimates are obtained using the SW model [Eqs. (2),
(4), and (5)]. The sample period is from January 1995 to January 2012.

the SW model. Notably, if γ in reality varies inversely with volatility, it
is possible that . In this case, the SW model is equal to the2

0t t   
zero-beta CAPM with the (time-invariant) first-order autoregressive
term. Alternatively, the same result could be due to time variation in λ
or in both coefficients. However, we do not try to interpret the zero-beta
CAPM with the autoregressive term as a special case of the SW model
of which underlying prediction is that autocorrelation varies with
volatility.

Ignoring the first-order autoregressive component results in
considerable underperformance. This is demonstrated by the AIC value
of the pure zero-beta CAPM. The results suggest it is important to
consider autocorrelation in returns in empirical asset-pricing models. In
general, ignoring autocorrelation in returns is likely to affect any
application that utilizes estimates for expected stock returns. For
instance, obtained estimates for δi differ in their statistical significance
between the zero-beta CAPM with and without the autoregressive term,
whereas the SW model and the zero-beta CAPM with the autoregressive
term agree with their results.

The exponential autoregressive model with volatility performs as
well as the two other models with an autoregressive term based on the
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AIC value. In this respect, the relevance of the risk-return trade-off
component on a model’s performance seems to be small. With the
exponential autoregressive model, the point estimates for ρ1is are all
positive, implying that the level of the first-order autocorrelation
increases during low-variance periods. This agrees with the results
obtained with the SW model. However, with the exponential AR, all
estimated autoregressive coefficients are statistically insignificant.

The estimated ARCH and GARCH parameters (untabulated) show
that the conditional covariance matrix is clearly time-varying. Based on
Engle’s LM test statistics, ARCH effects in standardized squared
residuals have disappeared, indicating that the variance
parameterizations are satisfactory. The null hypotheses of a diagonal
ARCH and GARCH coefficient matrix are both rejected by the robust
Wald statistics. Thus, the volatility spillovers between the return series
are important in fully capturing the dynamics of the conditional second
moments.12

B. Specification test for global factors

Autocorrelation in unadjusted stock returns may reflect time-varying
risk premia (Anderson, 2011). International asset-pricing models (e.g.
Errunza and Losq, 1985) predict that if a country’s financial market is
financially integrated with world capital markets, the global market risk
should be a more relevant pricing factor than the local market risk. For
example, DeSantis and Imrohoroglu (1997) find support for both
regional and global integration in Latin America. Therefore, it is
possible that a global stock market factor could have explanatory power
for the expected returns on the stock indices in addition to the SW
model and other models tested in the previous section. Previous
autocorrelation studies seldom control their results for increased
financial integration between world capital markets.

Another potentially relevant global factor is the oil price, which
closely reflects developments in the global economy. Changes in the oil
price may proxy for marginal utility growth, in which case fluctuations

12. A diagonality restriction for A and B matrices is often imposed in asset-pricing
studies to ease numerical estimation of multivariate GARCH-in-mean models (see, e.g.,
DeSantis and Gerard, 1997; 1998). The above result implies that this may be an overly
restrictive practice. More precisely, as González-Rivera (1996) discuss, a rich
parameterization that allows interactions between series is desired as the consistency of the
GARCH-in-mean parameter depends on a well-specified volatility process.
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in the oil price could influence security prices. Thus, oil price changes
can have additional explanatory power for the expected returns. Basher
and Sadorsky (2006) report that oil-price risk influences stock returns
in various emerging markets. For the United States, Elder and Serletis
(2010) note that the oil price uncertainty has a negative effect on real
output. Hence, it is possible that omitted factors such as oil-price risk
and the global market factor are partly influencing the obtained results. 

To test whether global factors are influencing the expected returns,
we estimate all models with the lagged percentage changes in the Brent
oil price and global stock market performance as additional regressors.13

The alternative system of mean equations, for example, for the SW
model is

(6)
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where Xt–1 is a vector of global variables known at time t–1 and θi is a
vector of coefficients. Ghysels et al. (2005) and Kinnunen (2014) take

TABLE 3. Specification test for the global factors

H0: Global factors do not help forecast returns χ2 (4) AIC LLF

SW model 4.366 2485.871 –1219.935
Exponential AR with volatility 6.008 2486.026 –1222.013
Conditional zero-beta CAPM 9.599* 2487.885 –1224.942
Conditional zero-beta CAPM with AR(1) 4.777 2486.432 –1222.216

Note:  This table shows the robust Wald statistics for the null that lagged global factors
as additional explanatory variables do not help forecast future returns. The global factors are
the global stock market return and percentage changes in the Brent oil price. Both variables
are lagged by one period. The estimated alternative mean specification for the SW model is
eq. (6). The exponential autoregressive model with volatility and the rest of the models are
augmented similarly with the global component. The zero-beta CAPM results if all
autoregressive coefficients are set to zero in the SW model. In the zero-beta CAPM with
AR(1), only the coefficients that allow autoregressive coefficients to vary with volatility are
restricted to zero. AIC and LLF denote the Akaike information criteria and log-likelihood
function, respectively. ** and * denote significance at the levels of 1% and 5%, respectively.

13. The global stock market performance is approximated by the Thomson Datastream
Global equity index.
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a similar approach in their study.
Table 3 shows the robust Wald statistics for the joint null of no

additional forecasting power. The conditional zero-beta CAPM is the
only model for which the additional global component, , is1i tX 
statistically significant. None of the individual coefficients in θi
(untabulated) are significant at the 5% level with the exception of the oil
coefficient for the US return series with the conditional zero-beta
CAPM. This is the only model for which the AIC value is better than
without the global factors. For the other models, specifications without
the additional component perform better. In general, it seems that the
tested global factors do not have additional explanatory power for the
expected returns when autocorrelation is taken into account.

C. International portfolio allocation

The previous section shows that the SW model and the exponential AR
model fit the data better than the conditional zero-beta CAPM without
the time-invariant autoregressive term. The results imply that ignoring
autocorrelation in returns can influence any application that uses
estimates for expected stock returns. To assess further the economic
significance of time-varying autocorrelation in returns, we next analyze
its effect on portfolio allocation between the US and Latin American
stock markets. To avoid making further assumptions on the level of risk
aversion, we first consider the global minimum variance portfolio.14

Second, we analyze a tangency portfolio with a risk-free asset and a
shorting constraint.15

Global minimum variance portfolio

For any investor, regardless of their risk aversion, mean-variance
optimization implies the following portfolio allocation for the global
minimum variance portfolio:

14. More formally, an investor’s mean-variance optimization problem is:
 subject to  and . If a risk-free asset does not Min Minp

w w
Var R w Hw 1 1w  R w  

exist, the optimal combination of the risky assets depends on the expected rate of return μ,
which in turn depends on an investor’s risk preferences. The global minimum portfolio has
the lowest variance among all portfolios consisting of risky assets, so its solution does not
require setting μ.

15. For more details on portfolio optimization, see Huang and Litzenberger (1988).
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(7)
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where wMVP is the 2 x 1 vector of optimal weights for the US and Latin
America and 1 is a vector of ones. The global minimum variance
portfolio has the lowest variance among all portfolios consisting of only
risky assets. As eq. (7) does not include expected returns, the minimum
variance portfolio solution nicely demonstrate the indirect effect of
time-varying autocorrelation that comes via forecasting errors’ influence
on the covariance matrix [modeled using eq. (5)]. More precisely,
empirical mean models yield different expected returns, but the actual
effect on the allocation decision and realized portfolio performance is
caused by forecasting errors’ influence on expected (co)variances.

Estimations in the previous section yield expected returns and
(co)variances of returns on the US and Latin America stock portfolios.
We track the performance of different models as follows. First, at the
beginning of each month, the minimum variance portfolio is chosen
based on estimated expected values from different models. Second, the
performance of different models is compared based on average
realizations over the entire sample period. Gerard and Wu (2006) use
the same strategy in analyzing intertemporal risk and its effect on asset
allocation.

Table 4 shows average performance characteristics for different
models. Since the minimum variance portfolio solution [eq. (7)] does
not include expected returns, it is hardly surprising that, on average, the
fractions invested in the US and Latin America portfolios do not differ
considerably among models. The realized returns and standard
deviations, on the other hand, differ more significantly. Based on
average returns and standardized average returns, the SW model
outperforms the exponential AR and the zero-beta CAPM with or
without the first-lag autoregressive term. The SW model earns on
average 0.823% per month, whereas worst-performing pure zero-beta
CAPM portfolio earns only 0.724% per month. The resulting percentage
different in average return and standardized return between these two
models is approximately 15%, which is a high figure, especially at the
annual level. This translates to a 1.19 percentage point difference per
annum, which is further achieved with a lower standard deviation. In
fact, the difference between the performance of the model without an
autoregressive term and the other models is always substantial,
indicating that the first-order autocorrelation should be noted in
portfolio allocation decisions.
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Figure 2 shows the mean-variance frontier for all static combinations
of the US and Latin America weightings, with the minimum variance
portfolio realizations for the SW model and its alternatives. The SW
model is the only model that beats the static minimum variance
portfolio. The average realized return (standard deviation) on the static
minimum variance portfolio is 0.8% (4.927%) per month. The results
imply that it is important to consider time-varying autocorrelation in
portfolio decisions, even if the expected returns are not needed directly
as is the global minimum variance portfolio solution. Since the

TABLE 4. Minimum variance portfolios

Zero-beta
SW Exponential Zero-beta CAPM with

model AR CAPM AR(1)

Fraction in US stock portfolio

Mean 1.109 1.100 1.103 1.095
SD 0.197 0.170 0.166 0.182

Fraction in Latin America stock portfolio

Mean –0.109 –0.100 –0.103 –0.095

Realized returns

Mean 0.823 0.791 0.724 0.783
SD 4.885 4.929 5.047 4.943
Mean/SD 0.168 0.161 0.143 0.158

Expected returns

Mean 1.195 1.118 0.989 1.175
E[SD] 4.438 4.450 4.618 4.465

Correlations of realized returns

SW model 1.000
Exponential AR 0.997 1.000
Zero CAPM 0.969 0.972 1.000
Zero-beta + AR 0.997 0.999 0.970 1.000

Note:  This table shows the average performance of minimum variance portfolios
generated period by period using eq. (7). Expected returns are modeled using the SW model,
the exponential autoregressive model with volatility, and the zero-beta CAPM with and
without the first-order autoregressive term. The conditional covariance matrix is modeled
using the BEKK parameterization, in which the squared lagged forecasting errors and
cross-errors and the lagged conditional covariance matrix are used to generate the expected
variances and covariances. Returns are monthly and in percentage form. Expected returns and
variance on portfolios are the average fitted values.
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FIGURE 2.— Mean-variance frontier and minimum-variance
portfolios
Note: The figure shows the historical mean-variance frontier and the average performance
of minimum variance portfolios generated period by period. Returns and standard deviations
are monthly and in percentage form.

exponential AR allows also autocorrelations that vary with volatilities,
the results show that the risk-return trade-off component can be
important in practical applications based on the superior performance
of the SW model.

Tangency portfolio with a risk-free asset

If there exists a risk-free asset, Rf, investors will hold a portfolio that
consists of some combination of the risk-free asset and the tangency
portfolio. The tangency portfolio is the optimal combination of the risky
assets that is the same for all investors irrespective of their risk aversion.
Mean-variance optimization implies the following portfolio allocation
for the tangency portfolio without short-selling limitations:

(8)
 1

f
Target

f

H R R
w

B AR

 



where
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Eq. (8) utilizes a vector of expected returns, R, which is likely to
highlight differences between models. Thus, contrary to the previous
section, the tangency portfolio solution shows both the direct effect of
dynamic autocorrelation in portfolio choice. In the following analyses,
we use the one-month Eurodollar rate observed at time t–1 for the
risk-free rate calculations for time t.

Although the solution with eq. (8) is unrestricted, following Kroner
and Ng (1998), we consider a portfolio allocation decision with a
no-shorting constraint. This is an illustrative case that portfolio
managers face in practice.16 If short selling is restricted, eq. (8) cannot
be used as such and numerical optimization is needed instead. However,
since we analyze only two risky assets, it is easy to show that, given the
solution with eq. (8), the optimal portfolio holding of the US stock
market portfolio for the next period is

, (9)*

0 if 0
if 0 1

1 if 1

US

US US US

US

w
w w w

w


  
 

whereas the optimal holding of the Latin America stock portfolio is
.*1 USw

Table 5 shows the performance of different models. Again, it is
apparent that taking autocorrelation in stock returns into consideration
improves portfolio performance in terms of average return and
risk-corrected average standardized return. Based on the realized
figures, the zero-beta CAPM without the autoregressive term performs
considerably worse than the models that include an autoregressive term.
However, allowing time-varying autoregressive coefficients seems to be
less important than in the previous section.

16. If there are no restrictions on short selling, optimal solutions with the estimated
models occasionally suggest taking unrealistically large short positions. In most cases, margin
limits and fund rules would prohibit a portfolio manager to take a huge short position in a
particular stock market. Moreover, during the global financial crisis, authorities in numerous
countries restricted short selling (Beber and Pagano, 2012).
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The exponential AR with volatility, i.e. the third best performer,
earns on average 0.163% percentage points per month more than the
zero-beta CAPM portfolio. The resulting percentage differences in the
two models in average return (19.5%) and standardized return (39%) are
significant figures (a 2.00 percentage point difference per annum with
a considerably lower standard deviation). The differences with other
models are more modest. Interestingly, if the first-order autocorrelation
is ignored, the fraction invested in an emerging stock market on average
is greater than that invested in the US stock market portfolio.

TABLE 5. Tangency portfolios with a risk-free asset and no short selling

Zero-beta
SW Exponential Zero-beta CAPM with

model AR CAPM AR(1)

Fraction in US stock portfolio

Mean 0.665 0.709 0.329 0.655
SD 0.392 0.382 0.289 0.391

Fraction in Latin America stock portfolio

Mean 0.335 0.291 0.671 0.345

Realized returns

Mean 1.036 1.001 0.838 1.150
SD 6.160 6.000 6.994 6.248
Mean/SD 0.168 0.167 0.120 0.184

Expected returns

Mean 1.748 1.545 1.687 1.706
E[SD] 5.461 5.233 6.398 5.436

Correlations of realized returns

SW model 1.000
Exponential AR 0.884 1.000
Zero CAPM 0.881 0.836 1.000
Zero-beta + AR 0.952 0.868 0.904 1.000

Note:  This table shows the average performance of tangency portfolios, generated period
by period, when the risk-free asset is available and short selling is forbidden. Expected returns
are modeled using the SW model, the exponential autoregressive model with volatility, and
the zero-beta CAPM with and without the first-order autoregressive term. The conditional
covariance matrix is modeled using the BEKK parameterization. The risk-free rate is
approximated using the one-month Eurodollar rate for the monthly risk-free rate calculations.
Returns are monthly and in percentage form. Expected returns and variance on portfolios are
the average fitted values.
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FIGURE 3.— Cumulative performance
Note: The figure shows the cumulative in sample performance of an original one-dollar
investment in tangency portfolios generated period by period. The risk-free asset is available
and short selling is forbidden. The allocations are done using the SW model, the exponential
autoregressive model with volatility, and the zero-beta CAPM with and without the first-order
autoregressive term.

Figure 3 plots the cumulative performance of a one-dollar original
investment in tangency portfolios generated period by period using
different models. The percentage point difference in the cumulative
return over the 17-year sample period between the zero-beta CAPM
without the autoregressive term and the SW model is approximately 200
percentage points. The difference between the zero-beta CAPM with
and without the autoregressive term is approximately 350 percentage
points. These are economically significant differences.

The correlation coefficients between the realized returns support the
view that there is now a more significant difference between models
than in the previous section. This seems reasonable as, contrary to the
previous section, expected returns now directly affect the allocation
decision through eq. (8). In general, comparison of the expected and
realized returns and variances reveal that all models tend to overstate
expectations.

When evaluating the previous results, it should be noted that this
study does not consider the effect of transaction and information
gathering costs on models’ performance. Gains from international



Multinational Finance Journal44

diversification are likely to be reduced, at least slightly, if these costs
were included. Specifically, especially investments in emerging
markets, can involve hard-to-quantify costs such as information
gathering and processing costs. In the previous sections, the standard
deviation of the mean investments in the US and Latin America stock
portfolios is always lowest for the zero-beta CAPM without the
autoregressive term. As Gerard and Wu (2006) mention, the standard
deviation of the mean investment serves as a proxy for portfolio’s
turnover. This indicates that the pure zero-beta CAPM, with least
turnover, could perform better if transactions costs were included in the
analysis. However, the differences in the standard deviations of mean
investments compared to differences in model performance are small
enough to conclude that the model rankings would stay essentially
unchanged.

V. Conclusions

This paper studies the relevance of time-varying return autocorrelation
in modeling expected returns and allocating funds between developed
and emerging stock markets. The analysis is conducted using monthly
US and Latin America aggregate stock market data. The SW model’s
performance in explaining stock market returns is first evaluated against
traditional asset-pricing models and an empirical model that allows for
time-varying autocorrelation. The results are controlled against the
influence of global pricing factors. Second, the direct and indirect
effects of considering time-varying autocorrelation in international
portfolio allocation are studied.

Consistent with previous studies, the study reveals that
autocorrelation varies with volatility. The result from the SW model
suggests that some investors’ demand for stocks is based on past price
changes in both the US and Latin American market areas. In this case,
both a conditional risk-return trade-off and autocorrelation can cause
return predictability. Time-varying first-order autocorrelation in stock
returns appears to be mostly positive in both stock markets – usually at
a higher level in Latin America returns than in the US aggregate return.
This finding agrees with the general view that autocorrelation is more
important in emerging stock market returns. Contrary to previous
authors, we control the results against the influence of global factors
that may affect the findings regarding time-varying autocorrelation.
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Global market returns and changes in the oil price as additional
variables do not help forecasting returns in addition to a risk-return
trade-off and a first-lag autoregressive component.

The SW model and the exponential autoregressive model fit the data
considerably better than the conditional zero-beta CAPM. This implies
that heterogeneous agent models and models that account for
time-varying autocorrelation offer a more realistic description for stock
returns than models assuming a single representative investor or ignore
serial dependence in stock returns. However, differences in performance
in explaining monthly returns between the SW model and alternative
models with a first-order autoregressive term are modest.

Considering dynamic return autocorrelation can improve an
investor’s portfolio allocation between emerging and developed stock
markets. Using the SW model and its alternatives to model expected
returns, we construct period by period both the global minimum
variance portfolio and the tangency portfolio with the risk-free return
and a shorting constraint. Based on the average performance of different
models, accounting for time-varying autocorrelation can be
economically important in portfolio optimization. Dynamic return
autocorrelation can influence portfolio choice: both indirectly via the
effect of forecasting errors on the conditional covariance matrix and
directly through the expected returns on the stock markets. The most
drastic difference in portfolios performance is not due to allowing
autocorrelation to vary over time, but realizing that stock returns are
autocorrelated, especially in emerging stock markets. The portfolios
constructed using the zero-beta CAPM without a first-order
autoregressive term always significantly underperform in terms of risk
and return characteristics.

Accepted by:  Prof. G. Koutmos, Guest Editor, June 2018
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