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This article provides a mathematical and empirical investigation of the reasons
for the presence of skewness and kurtosis in financial data. The results indicate
that this phenomenon is triggered by higher-order moment dependencies in the
data, such as asymmetric and conditional volatility. Moreover, the article
develops and tests successfully a skewed extension of the generalized error
distribution (SGED), which is then used to model European call option prices.
Under the standard assumptions of risk neutrality, normality of log-returns, and
absence of arbitrage opportunities, the SGED model yields as special cases
several well-known models for pricing options on stocks, stock indices,
currencies, and currency futures. (JEL: C13, C22, G12, G13)
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I. Introduction

Commonly used option pricing models, including that of Black-Scholes,
are based on the assumption that prices of financial assets follow the
geometric Brownian motion. A key assumption of the geometric
Brownian motion is that the ratio of two consecutive prices does not
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depend on past prices. Furthermore, the natural logarithm of two
consecutive prices, known as the log-return, is assumed to be normally
distributed with the same annualized mean and variance over time.1

The geometric Brownian motion’s assumptions imply that
log-returns are identically and independently distributed (i.i.d.) normal
variables, thus they exhibit no moment dependencies, such as
asymmetric and conditional volatility. The presence of conditional
volatility in the log-return series of financial assets is well documented
in the GARCH literature, e.g., Akgiray (1989) and Ballie and Bollerslev
(1989). The EGARCH literature further documents that volatility is
larger during market downturns than market upturns (asymmetric
volatility), e.g., Hsieh (1989), Nelson (1991), and Booth, Martikainen,
and Tse (1997). As shown in this article, these dependencies are likely
to trigger skewness and kurtosis in of log-return distributions.

The nature of option pricing necessitates the use of probability
distributions which provide a good fit to the empirical distribution of
log-returns accommodating skewness and kurtosis. These distributions
are required to have all their moments defined, i.e., have a moment
generating function and include the normal distribution as a special
case. The latter assumption is consistent with the assumption that price
changes follow a geometric Brownian motion.

This article provides a mathematical and empirical investigation of
the reasons for the presence of skewness and kurtosis in financial data.
To accommodate these properties, the article formally develops a
skewed extension of the generalized error distribution (SGED) and tests
its ability to model the empirical distribution of log-returns of several
popular financial series. The SGED is then used to derive a pricing
model for European call options that accounts for skewness and
kurtosis. As shown in the article, the SGED model nests several
well-known call option pricing models for stocks, stock indices,
currencies, and currency futures.
 The article is organized as follows. The next section presents a
preliminary statistical analysis of the data. Section ΙΙΙ investigates the
reasons for the presence of skewness and kurtosis in the data. Section
IV discusses the implications of skewness and kurtosis for the geometric

1. The log-return is yt = ln(Pt/Pt–1) = ln(1+rt), where rt is the return for the period t–1
to t. The return rt could be expressed in terms of yt, as rt= exp(yt) – 1. Unlike returns,
log-returns can be added across periods. For example, a monthly log-return is equal to the
sum of daily log-returns during the month, i.e., Yn = Σ yt, where n is the number daily
log-returns. The linear nature of log-returns simplifies considerably the computation of
annualized means and variances of log-returns.
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Brownian motion. Section V derives and applies the SGED to the data.
Section VI presents the derivations for the SGED option pricing model.
The last section offers the conclusions.

II.  Data and Preliminary Findings

Table 1 lists the financial series and periods covered by the data. The
data include daily, weekly, monthly and quarterly log-returns for two
widely-held stocks (Boeing and IBM), three stock indices (Dow Jones
Industrial Average (DJIA), S&P100, and S&P500), and two U.S. dollar
exchange rates (British pound and Japanese yen). All of these assets
have actively traded options. For example, call options on Boeing and
IBM stocks and on the DJIA, S&P100, and S&P500 stock indices are
actively traded on the Chicago Board of Options Exchange (CBOE).
The data spans the period January 2, 1975 to December 31, 2014.

Log-returns at all frequencies are computed using the formula

, (1) 1100 lnt t ty P P 

where Pt is the price at the end of period t. For example, using monthly
data, Pt–1 and Pt and are the closing prices on the last trading day of two
consecutive months t–1 and t. It can be readily shown that the additive
property implies that a monthly (or quarterly) log-return is equal to the
sum of all daily returns during the month (or quarter). As a
consequence, statistics such as the mean and variance of lower

TABLE 1. Financial Series

No Name Symbol OBS Period of Data

1. Boeing BA 10,091 1/3/1975 - 12/31/2014
2. IBM IBM 10,091 1/3/1975 - 12/31/2014
3. DJIA $INDU 10,435 1/2/1975 - 12/31/2014
4. S&P100 $OEX 8,042 3/6/1984 - 12/31/2014
5. S&P500 $INX 10,435 1/2/1975 - 12/31/2014
6. GBP/USD GBP/USD 10,435 1/2/1975 - 12/31/2014
7. JY/USD JY/USD 7,564 1/3/1986 - 12/31/2014

Note:  The stocks and currencies included in the above list are actively traded in U.S.
financial markets. Options, futures, and other derivative assets written on them are very
popular in the U.S. The currencies are expressed in terms of the U.S. dollar.
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frequency data can be derived from those of higher frequency data.
Table 2 reports basic statistics of log-returns for all series examined,

starting with the mean, the standard deviation, and the minimum and
maximum values of log-returns in the first four rows. To allow
comparison across the four data frequencies, the statistics are
annualized using the formulas min/Δt, and max/Δt, where, ,y t S t 
Δt = 1/252, 1/52, 1/12 and 1/4, for the daily, weekly, monthly and
quarterly frequencies, respectively, where is the simple arithmeticy
mean and S the sample standard deviation.

The annualized means for the stocks and stock indices range
between 4.6552% and 14.0506% and the means for the two currencies
between !0.9355% and !2.0902%. Note that the mean and standard
deviation of log-returns for each series are quite similar across the four
data frequencies examined; a result which is due to the additive property
of log-returns and the linearity of the mean estimator. The similarity of
standard deviations across the four data frequencies suggests that data
of any frequency may be used to estimate the mean and volatility of
asset log-price changes. In most cases, the standard deviations of log-
returns are larger than their means, indicating high volatility. This
phenomenon is confirmed by the large discrepancies between the
minimum and maximum values of log-returns.

The next four rows give the statistics and t-values for standardized
skewness and standardized kurtosis in excess of three, which is the
standardized kurtosis for the normal distribution, computed using the
equations

(2)3 2
1 3 2ˆ ˆb m m

and
(3) 2

2 4 2ˆ ˆ 3,b m m 

where
(4) ˆ j

j tm y y T 

is the estimate for the jth moment around the sample mean. Under the
null hypothesis of normality, the two statistics are normally distributed
with standard errors and 1 6SE b T  1 6 .SE b T

In general, the data series exhibit significant negative skewness
across all four frequencies. The only exceptions are the daily and
weekly log-returns for Boeing and the monthly log-returns for IBM. The
excess kurtosis values are statistically significant in all cases implying
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TABLE 2. Preliminary Statistics

Estimates Daily Weekly Monthly Quarterly

A. Boeing

Mean 13.9601 13.9724 14.0506 13.9853
Standard Deviation 31.6945 31.7474 31.3298 32.6269
minimum –4,886.1057 –1,227.4442 –519.4369 –253.0499
maximum 8,903.5831 2,035.2159 406.4927 186.1446
b1 0.415 0.1017 –0.2593 –0.3717

(17.02)** (1.9) (–2.32)* (–1.91)
b2 14.0881 4.7511 2.1454 1.2939

(288.88)** (44.3)** (9.58)** (3.33)**
BJ 83,739.36** 1,966.5** 97.23** 14.75**
Observations 10,091 2,087 479 159

B. IBM

Mean 4.6647 4.6552 4.6967 5.1069
Standard Deviation 26.5701 27.2054 24.9627 26.0154
minimum –6,574.2738 –1,887.1086 –360.7416 –187.3526
maximum 3,116.3503 1,196.0854 355.4328 153.1533
b1 –0.3289 –0.3819 0.089 –0.2594

(–13.49)** (–7.12)** (0.8) (–1.34)
b2 12.9657 7.8463 1.6506 1.4358

(265.86)** (73.17)** (7.37)** (3.7)**
BJ 70,865.24** 5,404.25** 55.01** 15.44**
Observations 10,091 2,087 479 159

C. DJIA

Mean 8.4156 8.4132 8.4226 8.3164
Standard Deviation 17.1063 17.6489 15.4373 16.1252
minimum –6,689.9406 –1,828.5294 –324.37 –123.3565
maximum 2,742.6787 681.0413 172.3855 84.7035
b1 –1.4536 –1.4609 –0.7128 –0.7582

(–60.62)** (–27.25)** (–6.37)** (–3.9)**
b2 40.2445 22.9967 3.7743 1.4467

(839.16)** (214.45)** (16.86)** (3.72)**
BJ 707,872.46** 46,729.92** 324.88** 29.1**
Observations 10,435 2,087 479 159

D. S&P100

Mean 7.9908 8.0110 8.0155 7.8642
Standard Deviation 18.69 18.4228 16.008 16.8535
minimum –6,183.0804 –1,743.8139 –289.2516 –118.9073
maximum 2,780.9704 621.661 168.4502 92.9781

( Continued )
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TABLE 2. (Continued)

Estimates Daily Weekly Monthly Quarterly

D. S&P100

b1 –1.2466 –1.5973 –0.9063 –0.9047
(–45.64)** (–26.15)** (–7.11)** (–4.1)**

b2 29.4299 21.1519 3.0421 1.7858
(538.72)** (173.14)** (11.93)** (4.04)**

BJ 292,305.48** 30,659.75** 192.8** 33.12**
Observations 8,042 1,608 369 123

E. S&P500

Mean 8.5096 8.5151 8.5166 8.4174
Standard Deviation 17.3256 17.7345 15.4574 16.3197
minimum –5,976.8276 –1,659.9106 –296.1221 –112.5027
maximum 2,859.8281 673.4488 175.3387 88.0366
b1 –1.1473 –1.2177 –0.8325 –0.8071

(–47.85)** (–22.71)** (–7.44)** (–4.15)**
b2 28.2369 16.7235 3.3502 1.331

(588.79)** (155.95)** (14.97)** (3.43)**
BJ 348,957.75** 24,835.95** 279.33** 29**
Observations 10,435 2,087 479 159

F. GBP/USD

Mean –1.026 –1.0322 –1.0069 –0.9355
Standard Deviation 9.6346 10.2107 10.4678 10.5994
minimum –1,022.6542 –530.2511 –167.7294 –83.273
maximum 1,218.1852 330.4369 157.0867 59.9604
b1 –0.0528 –0.469 –0.3306 –0.438

(–2.2)* (–8.75)** (–2.95)** (–2.25)*
b2 4.0676 3.8873 2.097 1.3898

(84.82)** (36.25)** (9.37)** (3.58)**
BJ 7,198.56** 1,390.54** 96.49** 17.88**
Observations 10,435 2,087 479 159

G. JY/USD

Mean –1.7475 –1.7123 –1.7891 –2.0902
Standard Deviation 11.3237 11.5016 11.4819 12.4587
minimum –2,003.7751 –691.8273 –199.5999 –75.3561
maximum 1,521.7646 328.4774 122.2159 67.7685
b1 –0.4264 –0.6155 –0.342 –0.4069

(–15.14)** (–9.77)** (–2.6)** (–1.78)
b2 6.9059 4.5649 1.6913 0.426

(122.6)** (36.24)** (6.43)** (0.93)
BJ 15,260.11** 1,409.18** 48.13** 4.04
Observations 7,564 1,513 347 115

( Continued )
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that the log-return are leptokurtic relative to the normal distribution.
The ninth row of table reports the Bera-Jarque statistics for testing

the null hypothesis of normality, given by

. (5)  2 2
1 224 4BJ T b b 

The BJ is asymptotically χ2(2) with two degrees of freedom. Its critical
values are 5.99 at the five-percent level and 9.21 at the one-percent
level. The BJ statistics confirm the significance of skewness and/or
leptokurtosis by rejecting the normality assumption in all series. 

In summary, these preliminary results indicate that distributions of
the log-return series are leptokurtosis and, in most cases, skewed. These
findings are, however, based on the null hypothesis of normality and
provide no information as to the parametric distribution of the data.
Moreover, the statistics for skewness and kurtosis may be magnified by
the presence of outliers.

III.  Causes of Skewness and Kurtosis

The central limit theorem states that the distribution of the sum of i.i.d.
random variables approaches the normal distribution as the number of
variables summed-up increases. Provided that daily log-returns are i.i.d.
random variables, the distributions of quarterly log-returns, each being 
the sum of about 63 non-overlapping daily log-returns, should be
normal. However, this is not the case because of the fact that daily log-
returns exhibit strong higher order moment dependencies such as,
asymmetric volatility, conditional heteroskedasticity (volatility), or
other dependencies. 

TABLE 2. (Continued)

Note:  Log-returns for the period t to t–1 are computed using yt = 100×ln(Pt/Pt–1), where
Pt is the price of the stock or the value of the currency or index at time t. The mean, variance,
minimum and maximum return are based on annualized returns computed using yt /Δt, where
Δt = 1/252, 1/52, 1/12, and 1/4 for the daily, weekly, monthly and quarterly frequencies. The
statistics for skewness and excess kurtosis are computed using b1 = m3 / m2

3/2, b2 = (m4/m2
2)

– 3, where mi is the sample the ith centered moment. Parentheses include t-values statistics.
The Bera-Jarque statistic for testing normality, BJ = (T/24) (4b1

2 + b2
2), is distributed as χ2(2)

with 2 degrees of freedom.Its critical value at the five-percent level is 5.99 and a the one-
percent level is 9.21. *,** statistically significant at the five- and one-percent level of
significance.
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Let Zn = z1 + z2 + þ + zn be the sum of n non-overlapping random
variables, where zt = (yt !μ)/σ, and μ and σ are the mean and standard
deviation of the log-return yt. As such, the third and fourth moments of
zt, denoted by m3 and m4, are the standardized skewness and kurtosis of
yt. The expected value of Zn is zero, i.e., Ε(Zn) = 0. Moreover, under the
assumption of i.i.d. log-returns E(zt zs) = 0, for t … s and var(Zn) = n.

The third and fourth centered moments of Zn are

 33
3 1 2n nM EZ E z z z    

(6)3 23t t s t s p
t t s t s p

Ez Ez z Ez z z
  

    
and

 44
4 1 2n nM EZ E z z z    

4 3 2 24 3t t s t s
t t s t s

Ez Ez z Ez z
 

    

(7)23 .t s p t s p r
t s p t s p r

Ez z z Ez z z z
    

  

Provided that zt are i.i.d., for ,t s p r  

(8)0,t s pEz z z 

(9)2 0,t sEz z 

(10)0,t s p rEz z z z 

(11)2 0,t s pEz z z 

(12)2 2 2 2 1,t s t sEz z Ez Ez 
and

(13)3 0.t sEz z 
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Deviations of the above measures from their null values are evidence of
the existence of higher order moment dependencies in the distribution
of log-returns. Their substitutions into equations (6) and (7) give

(14)3
3 3,nM EZ nm 

and
(15) 4

4 4 3 1 .kM EZ nm n n   

where m3 = Ez3 and m4 = Ez4 are respectively the standardized skewness
and standardized kurtosis measures for z and y as well. The skewness
and kurtosis for Zn are

(16)
 

3
3 3

3 2 3 2 ,
var

n

n

EZ nm mSK
n nZ

  

and

(17)
 

 4
4

2 2

3 1
var

n

n

nm n nEZKU
nZ

 
  4 13 1 .m

n n
    
 

It follows easily from the above equations that as n64 the skewness
measure SK approaches the value of zero and the kurtosis KU the value
of three which the standardized skewness and kurtosis values for the
normal distribution.

Equations (6) and (7) provide the foundation for constructing test
statistics for higher-order moment dependencies in financial data,

(18a) 
2 4

1 1

ˆ ˆ
and vart t j tz z Ezmz mz

T T
 

(18b) 1 2
2 2

ˆ ˆ ˆ 1and var ,t t tz z z
mz mz

T T
  

(18c) 
3 6

1
3 3

ˆ ˆ
and var ,t t tz z Ezmz mz

T T
 
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(18d)
     22 2 4

4 4

ˆ ˆ 1
and var ,t t j tz z Ez

mz mz
T T

 
 

(18e) 
2 4

1 2
5 5

ˆ ˆ ˆ
and var ,t t t tz z z Ezmz mz

T T
  

and

(18f) 1 2 3
6 6

ˆ ˆ ˆ ˆ 1and var ,t t t tz z z z
mz mz

T T
   

where and S are respectively the sample mean and ˆ ,t tz y y S y 
standard deviation of yt, and T is the sample size and j = 1, 2 and 3. The
moments are estimated using respectively the statistics4 6andt tEz Ez

(19)4
4ˆ ˆtm z T

and
(20)6

6ˆ ˆ .tm z T

The variances of the statistics above are derived under the null
hypothesis that the sequence zt includes i.i.d. random variables, which
implies that all the statistics in (18) have a zero mean. Note that there is
a large number of statistics generated by (6) and (7) Thus, the above test
statistics are not exhaustive of all higher-order moment dependencies in
the data.

Table 3 presents the statistics given by (18a-f) along with their t-
values for all log-return series and frequencies. Statistically significant
monthly and occasionally in quarterly log-returns of all seven series.
These relationships weaken with aggregation. Many of the dependencies
documented on table 3 are consistent with earlier results on the
stochastic nature of log-returns of financial assets. This literature reports
that volatility is significantly clustered (conditional heteroskedasticity),
or that large log-returns are likely to be followed by large log-returns of
lesser magnitude, but undetermined sign. The latter implies

2 2 2 2 ,for .t s t sEz z Ez Ez t s 

The statistics based on zt
2zs

2 for s = t!1, t!2 and t!3, test for conditional
heteroskedasticity in the data, the presence of which is revealed in all
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TABLE 3. Higher Order Moment Dependencies

Estimates Daily Weekly Monthly Quarterly

A. Boeing

zt
2 zt–1 –0.0965 –0.21 –0.172 0.0307

(–2.35)* (–3.45)** (–1.66) (0.19)
zt

2 zt–2 –0.1377 –0.1126 0.0999 –0.3844
(–3.35)** (–1.85) (0.96) (–2.35)*

zt
2 zt–3 –0.1573 –0.0943 –0.2778 –0.308

(–3.82)** (–1.55) (–2.68)** (–1.88)
zt zt–1 zt–2 –0.0288 0.0653 0.0562 –0.0879

(–0) (0) (0) (–0.01)
zt

3 zt–1 0.0031 0.0054 1.1194 0.5817
(0.01) (0.01) (3.14)** (1.16)

zt
2 zt

2
–1 –1 1.1287 0.5898 0.4148 –0.0166

(6.64)** (3.48)** (1.77) (–0.05)
zt

2 zt
2

–2 –1 0.725 0.4735 0.3771 0.1155
(4.26)** (2.79)** (1.61) (0.34)

zt
2 zt

2
–3 –1 0.806 0.2809 0.8353 0.0174

(4.74)** (1.66) (3.56)** (0.05)
zt

2 zt–1 zt–2 0.1832 0.0646 –0.0966 0.2156
(4.45)** (1.06) (–0.93) (1.32)

zt zt–1 zt–2 zt–3 0.0523 –0.0206 –0.1298 0.1138
(5.26)** (–0.94) (–2.84)** (1.43)

B. IBM

zt
2 zt–1 –0.161 –0.2456 –0.2562 –0.3069

(–4.05)** (–3.41)** (–2.6)** (–1.84)
zt

2 zt–2 –0.1381 –0.0966 –0.0944 0.2382
(–3.47)** (–1.34) (–0.96) (1.43)

zt
2 zt–3 –0.0995 –0.054 –0.122 –0.0712

(–2.5)* (–0.75) (–1.24) (–0.43)
zt zt–1 zt–2 –0.0151 0.0254 0.0592 0.1169

(–0) (0) (0) (0.01)
zt

3 zt–1 0.461 0.2771 –0.2201 0.5829
(1.08) (0.56) (–0.72) (1.2)

zt
2 zt

2
–1 –1 1.9619 0.7696 0.4041 0.1625

(12.34)** (3.24)** (1.91) (0.46)
zt

2 zt
2

–2 –1 1.153 0.7991 0.3011 0.6947
(7.26)** (3.37)** (1.42) (1.99)*

zt
2 zt

2
–3 –1 0.7974 0.5243 0.5359 0.1366

(5.02)** (2.21)* (2.53)* (0.39)
zt

2 zt–1 zt–2 0.089 –0.2333 0.0816 –0.4637
(2.24)* (–3.24)** (0.83) (–2.78)**

zt zt–1 zt–2 zt–3 0.0323 0.0485 –0.0172 –0.2355
(3.25)** (2.22)* (–0.38) (–2.97)**

( Continued )
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TABLE 3. (Continued)

Estimates Daily Weekly Monthly Quarterly

C. DJIA

zt
2 zt–1 –0.4917 –0.5419 –0.442 –0.0555

(–7.64)** (–4.86)** (–3.72)** (–0.33)
zt

2 zt–2 –0.5663 –0.2506 –0.1045 –0.0669
(–8.8)** (–2.25)* (–0.88) (–0.4)

zt
2 zt–3 –0.3585 –0.148 –0.026 0.1786

(–5.57)** (–1.33) (–0.22) (1.07)
zt zt–1 zt–2 –0.0423 0.0463 0.1188 –0.1567

(–0) (0) (0.01) (–0.01)
zt

3 zt–1 5.6172 3.3654 0.445 –0.2178
(4.07)** (2.32)* (0.8) (–0.43)

zt
2 zt

2
–1 –1 4.4113 1.9363 0.8995 0.144

(10.42)** (3.4)** (2.91)** (0.41)
zt

2 zt
2

–2 –1 7.4108 2.8301 0.2878 0.0195
(17.51)** (4.98)** (0.93) (0.06)

zt
2 zt

2
–3 –1 3.6972 1.4791 0.4151 0.4481

(8.73)** (2.6)** (1.34) (1.28)
zt

2 zt–1 zt–2 0.0131 –0.5253 0.2275 0.1238
(0.2) (–4.71)** (1.91) (0.74)

zt zt–1 zt–2 zt–3 0.9713 0.1527 –0.1127 –0.0022
(99.22)** (6.98)** (–2.47)* (–0.03)

D. S&P100

zt
2 zt–1 –0.5776 –0.5289 –0.618 –0.3163

(–9.1)** (–4.32)** (–4.84)** (–1.61)
zt

2 zt–2 –0.5553 –0.3253 –0.2132 –0.1624
(–8.75)** (–2.66)** (–1.67) (–0.83)

zt
2 zt–3 –0.3382 –0.202 –0.1339 0.1408

(–5.33)** (–1.65) (–1.05) (0.72)
zt zt–1 zt–2 –0.0295 0.0522 0.2118 –0.1613

(–0) (0) (0.01) (–0.01)
zt

3 zt–1 4.2016 2.9331 0.7676 –0.1474
(3.84)** (2.03)* (1.52) (–0.26)

zt
2 zt

2
–1 –1 5.4177 2.0137 1.5671 0.2367

(14.98)** (3.35)** (5)** (0.55)
zt

2 zt
2

–2 –1 5.8484 3.0787 0.6404 0.1138
(16.17)** (5.11)** (2.04)* (0.27)

zt
2 zt

2
–3 –1 3.0715 1.6822 0.5724 0.7665

(8.49)** (2.79)** (1.82) (1.79)
zt

2 zt–1 zt–2 0.2717 –0.6468 0.4206 0.1216
(4.28)** (–5.28)** (3.29)** (0.62)

zt zt–1 zt–2 zt–3 1.0070 0.1776 –0.252 –0.0646
(90.3)** (7.12)** (–4.84)** (–0.72)

( Continued )
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TABLE 3. (Continued)

Estimates Daily Weekly Monthly Quarterly

E. S&P500

zt
2 zt–1 –0.5032 –0.501 –0.5956 –0.2369

(–9.2)** (–5.15)** (–5.18)** (–1.44)
zt

2 zt–2 –0.5066 –0.2919 –0.1784 –0.1603
(–9.26)** (–3)** (–1.55) (–0.97)

zt
2 zt–3 –0.3027 –0.2132 –0.1563 0.0799

(–5.53)** (–2.19)* (–1.36) (0.49)
zt zt–1 zt–2 0.0002 0.0604 0.1752 –0.1974

(0) (0) (0.01) (–0.02)
zt

3 zt–1 4.0284 2.0241 0.9435 0.0972
(4.18)** (1.86) (1.97)* (0.21)

zt
2 zt

2
–1 –1 4.1478 1.8058 1.5873 0.3118

(13.57)** (4.18)** (5.48)** (0.91)
zt

2 zt
2

–2 –1 6.1953 2.6703 0.7719 0.0942
(20.26)** (6.19)** (2.67)** (0.28)

zt
2 zt

2
–3 –1 3.3222 1.487 0.732 0.4534

(10.87)** (3.45)** (2.53)* (1.33)
zt

2 zt–1 zt–2 0.1349 –0.4591 0.5022 0.23
(2.46)* (–4.72)** (4.37)** (1.4)

zt zt–1 zt–2 zt–3 0.7692 –0.0431 –0.3686 –0.0313
(78.57)** (–1.97)* (–8.07)** (–0.39)

F. GBP/USD

zt
2 zt–1 –0.1124 –0.0536 –0.272 –0.3229

(–4.32)** (–0.93) (–2.64)** (–1.95)
zt

2 zt–2 –0.0695 0.0481 –0.0254 –0.0394
(–2.67)** (0.84) (–0.25) (–0.24)

zt
2 zt–3 –0.0379 –0.0504 0.0235 –0.0337

(–1.46) (–0.88) (0.23) (–0.2)
zt zt–1 zt–2 –0.0174 –0.0403 0.0337 0.0896

(–0) (–0) (0) (0.01)
zt

3 zt–1 0.8804 0.733 0.5166 1.1708
(7.25)** (2.57)* (1.44) (2.41)*

zt
2 zt

2
–1 –1 0.7569 0.7717 0.8117 0.2926

(10.94)** (5.12)** (3.49)** (0.85)
zt

2 zt
2

–2 –1 0.6582 0.4755 0.2927 0.6245
(9.51)** (3.16)** (1.26) (1.81)

zt
2 zt

2
–3 –1 0.7835 0.9536 0.1413 0.1748

(11.33)** (6.33)** (0.61) (0.51)
zt

2 zt–1 zt–2 0.2365 –0.0423 0.0554 –0.185
(9.09)** (–0.74) (0.54) (–1.12)

zt zt–1 zt–2 zt–3 0.0404 0.006 0.0296 –0.0298
(4.13)** (0.27) (0.65) (–0.38)

( Continued )
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daily and weekly log-returns. Similar relationships for stocks, stock
indices, and exchange rates are documented by a number of authors
including Akgiray (1989) and Baillie and Bollerslev (1989).

The EGARCH literature reports that stock market volatility is larger
during market downturns than market upturns, e.g., Nelson (1991), and
Booth, Martikainen, and Tse (1997), Chiang et al. (2013), Deleze and
Houssain (2014), Ferguson et al (2015), Gulati et al. (2013). This
finding implies that

   2 20 0 ,t s t sE z z E z z  

or that
 2 0,for .t sEz z t s 

TABLE 3. (Continued)

Estimates Daily Weekly Monthly Quarterly

G. JY/USD

zt
2 zt–1 –0.2592 –0.1378 –0.0922 –0.036

(–7.16)** (–1.95) (–0.79) (–0.21)
zt

2 zt–2 –0.1713 –0.0025 –0.2424 –0.0011
(–4.73)** (–0.03) (–2.09)* (–0.01)

zt
2 zt–3 –0.1118 –0.0613 0.138 –0.1684

(–3.09)** (–0.87) (1.19) (–0.98)
zt zt–1 zt–2 0.0416 0.0063 0.1156 0.0641

(0) (0) (0.01) (0.01)
zt

3 zt–1 0.2782 –0.2931 0.039 –0.0113
(1.14) (–0.69) (0.09) (–0.03)

zt
2 zt

2
–1 –1 1.2951 0.6842 0.1803 –0.3811

(11.37)** (3.52)** (0.72) (–1.2)
zt

2 zt
2

–2 –1 0.8722 0.4493 0.3293 0.0697
(7.66)** (2.31)* (1.31) (0.22)

zt
2 zt

2
–3 –1 0.3597 0.3841 0.0544 0.0727

(3.16)** (1.98)* (0.22) (0.23)
zt

2 zt–1 zt–2 0.1944 –0.0373 –0.0318 0.0103
(5.37)** (–0.53) (–0.27) (0.06)

zt zt–1 zt–2 zt–3 0.0406 –0.0956 –0.0083 –0.0345
(3.53)** (–3.72)** (–0.16) (–0.37)

Observations 7,564 1,513 347 115

Note:  The random variable z = (y–μ)/σ is standardized, i.e., ita has mean ero and
standard deviation one. The table presents the mean values of the constructs over the entire
sampling period across the four data frequencies. The parameter μ and σ are replaced by the
simple arithmetic mean and sample standard deviation. Parentheses include the t-values for
the estimates. *,** implies statistically significant higher order moment dependencies at the
five- and one-percent level of significance.
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Statistics based on the product zt
2zs, for s = t!1, t!2 and t!3, test for the

presence of asymmetric volatility in the data. The statistics reported in
table 3 reveal the presence of asymmetric volatility in almost all daily,
weekly and monthly log-return series. The negative statistics imply that
volatility is higher in a bearish market than in a bullish one.

The remaining statistics test for more complex higher-order moment
dependencies (or non-linearities) that may cause skewness and kurtosis
in lower frequency data. The results document such dependencies at the
daily, weekly and monthly data frequencies. These higher order-moment
dependencies are responsible for skewness and kurtosis in financial log-
return data; see equations (6) and (7).

IV.  Geometric Brownian Motion

Various option pricing models, including that of Black-Scholes, are
based on the assumption that prices of financial assets follow the
geometric Brownian motion. As a result, the ratio of two consecutive
prices does not depend on past prices and its log-value (log-returns) and
is normally distributed. Therefore, the ratio of two consecutive prices
is log-normally distributed. The mathematical relation between log-
returns (ΔlnPt) and geometric returns (ΔPt /Pt) is as follows:

. (21)ln ln ln 1t t t
t

t t

P PP
P P
   

      
   

Let μa Δt and σa
2Δt be the mean and variance of ΔlnPt, where μa and σa

2

are annualized measures and Δt is the length of time between two
consecutive prices expressed as a fraction of the year, i.e., for daily log-
returns Δt = 1/252. Consider the transformation

 (22)ln .t a

a

P tz
t



  




The log-return can be written as

(23)ln ,t a aP t t z     

where z is a standardized random variable. Under normality
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(24)lim ln lnt t a at
P d P dz 

 
   

where is a Wiener process. Equation (22) can be rewritten indz z dt
terms of geometric returns as 

(25) 1 expt t a aP P t t z      

Its moment function is 2

. (26)    2 21
21 expr

t t a aE P P r r t     

It follows from the above that 3

(27)      2 21 1
2 2exp 1t t a a a aE P P t t          

and
      22var 1 1t t t t t tP P E P P E P P      

. (28)     2 2 2exp 2 2 exp 2a a a a at t t           

Along the same lines as with equation (22)

(29) 21
2t t a a aP P t t z       

where z is a standardized log-normal random variable. As the0,t 
above equation yields that of the geometric Brownian motion

(30) 21
2 ,t a a t a tdP P dt P dz    

where  and are the instantaneous drift the standard 21
2a a tP  a tP

2. The moment function of x = ey, where y is a normal with mean μ and variance σ2, is
obtained from the moment generating function of y, i.e.,  2 21

2exp .r ryEx Ee r r   

3. Note that the terms of 2 3 2 21
21 2! 3! , where .x

a ae x x x x r r t        
the expansion of order two or greater vanish as the interval Δt becomes short.
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deviation of the process.
Ross (1999) shows that the GBM could also be obtained as a limit

of a simpler process. For example, consider the ratio of two consecutive
prices Pn/P0. The logarithm of the ratio

(31)   0 1
1

ln ln
n

n n t t
t

Y P P P P


 

could be broken down into the sum of n higher frequency log-returns
corresponding to period Δt and having mean μa Δt and variance σa

2 Δt.
Under the assumption of i.i.d. log-returns, the log-return Yn has a mean
E(Yn) = μa τ and a variance var(Yn) = σa

2τ, where τ = n Δt is the time
between prices P0 and Pn. For a large n, the central limit theorem states
that Yn will be approximately normal, i.e.,

, (32) n a

a

YP z z 
 

 
   

 

with the approximation becoming exact as .n 
The i.i.d. assumption for Pt/Pt–1 causes the Pn/P0 ratio to behave in

the limit as a GBM. As shown in the previous section, financial data
exhibit strong higher-order moment dependencies, such as asymmetric
volatility and conditional heteroskedasticity, which prevent lower
frequency log-returns from converging in probability to the normal
distribution. These complex dependencies are responsible for the
presence of skewness and kurtosis in the data. In this respect, the
stochastic process governing price changes is complex and extremely
difficult to approximate.

V.  Skewed Generalized Error Distribution

Introduced by Subbotin (1923), the GED includes as special cases the
Laplace, normal, and uniform distributions, e.g., Johnson, Kotz, and
Balakrishnan (1995). The GED is used by Box and Tiao (1962) to
model prior densities in Bayesian estimation, Nelson (1991) to model
the distribution of stock market returns, and Hsieh (1989) to model the
distribution of exchange rates.

The GED is nested in the generalized t distribution introduced by
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McDonald and Newey (1988) and its skewed extension introduced by
Theodossiou (1998); see also McDonald and Nelson (1989), Butler et
al. (1990) and Theodossiou and Savva (2015). Unlike the generalized
t distribution, all the moments and the moment generating function of
GED exist. Thus, the moments of exponential transformations of GED
random variables, needed to price options, can be evaluated. 

In this section, the generalized error distribution (GED) is extented
to accommodate skewness and leptokurtosis. Its ability to model the
empirical distribution of log-returns of financial assets is also evaluated. 

A. Skewed GED

The probability density function for the non-centered SGED is (see
appendix A for the derivations)

(33)
  

11 11 1exp
2 1

kk

y k k

ukf
k k sgn u  

              

where u = y !m, m is the mode of the random variable y, φ is a scaling
constant related to the standard deviation of y, λ is a skewness
parameter, k is a kurtosis parameter, sgn is the sign function taking the
value of !1 for u < 0 and 1 for u > 0, and 

  1

0

a xa x e dx


   

is the gamma function. The kurtosis parameter k controls the tails and
peakness of the distribution. The skewness parameter λ (!1 # λ #1)
controls the rate of descent of the density around m. In the case of
positive skewness (λ > 0) the density function is skewed to the right and
vice versa. 

Its moment function is

(34),
r r

u r rM Eu A 
where

, (35)     1 11 1 1 1
2

r r r
r rA G        
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. (36)
11 1r

k
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rG k
k k

        
   

The resulting expected value and variance of y are

(37)    1E y m E u m A     
and

(38)   22 2 2 2
2 1Eu Eu A A    

where

(39)
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
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and

. (40) 
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2
2

3 11 3 kA k
k k



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The Pearson’s skewness, see Stuart and Ord (1994), p. 108, is

. (41)  2
1 2 1m A A A     

The standardized skewness of y is

(42)
 
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The standardized kurtosis is

(44)
 

2 4
4 3 1 2 1 1
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2 1
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The SGED gives 1) for λ = 0 the Subbotin's or the power exponential
distribution, 2) for λ = 0 and k = 1 the Laplace or double exponential
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FIGURE 1.— Symmetric GED, Special Cases

distribution, 3) for k = 2 the skewed normal, 4) for λ = 0 and k = 2 the
normal distribution, 5) for λ = 1 and k = 1 the exponential distribution
and 6) for λ = 0 and the uniform distribution. Figure 1 presentsk  
a graphical illustration of the GED for a selected combination of the
parameters k. Note that as k gets smaller, the tails of the distribution
become flatter and the center becomes more peaked. 

The constants n and m can be expressed in terms of σ and μ as

(46) , ,k      

and
(47) , , ,m m k       

where
(48)2

2 11 A A  

A1, A2 and δ (Pearson’s skewness) are as defined previously. The direct
substitution of the above equations into equation (33) gives the centered



243Skewed GED and Option Pricing

TABLE 4. Skewness and Kurtosis Relative to k and λ

A. Skewness

k / λ 0.05 0.15 0.25 0.5 0.75 0.85 1
0.8 0.291 0.849 1.342 2.163 2.473 2.508 2.511
0.9 0.246 0.719 1.141 1.870 2.170 2.211 2.224
1.0 0.212 0.620 0.989 1.644 1.935 1.979 2.000
1.1 0.185 0.543 0.869 1.464 1.745 1.792 1.819
1.2 0.164 0.482 0.773 1.317 1.587 1.637 1.669
1.3 0.146 0.431 0.694 1.194 1.455 1.506 1.542
1.4 0.132 0.389 0.628 1.090 1.341 1.393 1.432
1.5 0.120 0.354 0.571 1.001 1.243 1.295 1.337
1.6 0.109 0.323 0.523 0.923 1.157 1.209 1.253
1.7 0.100 0.297 0.482 0.856 1.080 1.132 1.178
1.8 0.093 0.274 0.445 0.796 1.012 1.064 1.111
1.9 0.086 0.254 0.413 0.742 0.951 1.002 1.050
2.0 0.080 0.236 0.385 0.695 0.896 0.946 0.995
5.0 0.020 0.060 0.099 0.190 0.268 0.294 0.328

10.0 0.006 0.019 0.031 0.061 0.090 0.100 0.115
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B. Kurtosis

k / λ 0.05 0.15 0.25 0.5 0.75 0.85 1
0.8 8.622 9.052 9.796 11.897 13.030 13.163 13.173
0.9 7.066 7.373 7.912 9.511 10.485 10.637 10.671
1.0 6.030 6.258 6.664 7.920 8.765 8.922 9.000
1.1 5.299 5.475 5.790 6.801 7.539 7.695 7.799
1.2 4.761 4.900 5.150 5.980 6.630 6.781 6.900
1.3 4.351 4.462 4.666 5.357 5.934 6.079 6.205
1.4 4.030 4.121 4.289 4.873 5.387 5.525 5.655
1.5 3.772 3.847 3.988 4.487 4.948 5.079 5.210
1.6 3.561 3.625 3.744 4.175 4.590 4.714 4.844
1.7 3.386 3.440 3.542 3.918 4.293 4.410 4.539
1.8 3.238 3.285 3.373 3.703 4.044 4.154 4.280
1.9 3.113 3.153 3.230 3.522 3.833 3.937 4.060
2 3.005 3.040 3.107 3.367 3.652 3.750 3.869
5 2.071 2.075 2.083 2.120 2.176 2.203 2.246

10 1.884 1.886 1.888 1.899 1.917 1.927 1.942
4 1.800 1.800 1.800 1.800 1.800 1.800 1.800

Note:  The above skewness and kurtosis values are computed using equations (35) and
(37). Negative values of λ generate negative skewness values of equal magnitude as the
corresponding positive values.
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FIGURE 2.— Symmetric and Negatively Skewed Normal
Distributions

version of the SGED below

. (49)
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Table 4 presents the skewness and kurtosis values for various
combinations of k and λ. The results provide a better understanding of
the relationship between k and λ and the shape of the SGED. It appears
from the table that smaller values of k generate larger values for the
kurtosis; i.e., more leptokurtic density functions. Moreover, larger
positive values of λ result in larger positive values for both skewness
and kurtosis. On the other hand, negative values of λ generate identical
tables for skewness and kurtosis; however, all skewness values are
negative. Figure 2 shows the impact of skewness on the normal density
function.
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B. SGED Results

The SGED parameters are obtained by maximizing the log-likelihood
function of log-returns yt, for t = 1, 2, ..., T,

(50)   
1

max ln
T

t y t
t

L y f y


 




with respect to the parameter vector where , , , ,m g k  

(51)  e  

and

. (52)  2 1
1 gg

e
  



Both transformations are monotonic functions, therefore there is an one
to one relationship between the parameters  and their respective
transformed values. Moreover, note that the range of n and g is the real
line and as such the overshooting problems associated with the
constraints imposed on the parameters n and λ, i.e., n > 0 and |λ| < 1 is
avoided. The non-centered rather than the centered is preferred because
of its simplicity 

For practical purposes in estimation, the likelihood is specified using
the simplified non-centered rather than the centered probability
specification. The maximization of the sample log-likelihood function
is accomplished using an iterative procedure based on the Berndt, Hall,
Hall and Hausman (1974) algorithm. That is, during each iteration, the
values for θ are updated using the equation

(53)   11i i i iQ S   
  

where
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denote the first partial derivatives of the sample log-likelihood and the
sum of their cross-products, respectively. These partial derivatives
include psi (digamma) functions, computed using numerical techniques.
To avoid complications associated with discontinuities in the evaluation
of the psi functions, the derivatives are computed numerically using L. 

The maximum likelihood for the parameters φ and λ are obtained by
substituting the computed MLE values of φ and g into equations (51)
and (52). Further substitution of the computed values of m, n, λ and k
into equations (37) and (38) yields the maximum likelihood estimates
for the mean μ and standard deviation σ of y. Let these MLE estimators

. (56), , ,k      
  

Their sample variance-covariance matrix can be obtained from

(57)       1
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or the  inverse of the second-cross partial derivatives (Hessian matrix),

. (58)     2
1
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Both of the above equations are asymptotically equivalent, because of
the known MLE result

     (59)
2

1 1
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 

Robust estimators for the variance-covariance matrix, which is more
appropriate in case of mispecification, can be computed using the
equation

. (60)       1 1
var Q H Q   

 
    

Note that all of the above partial derivatives are computed numerically.
Table 5 presents the estimates for the parameters of the SGED for
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TABLE 5. SGED Estimates

Daily Weekly Monthly Quarterly
A. Boeing
μa 12.8218 13.9143 14.1441 14.3197

(2.78)** (2.92)** (2.87)** (2.69)**
σa 31.0482 31.4127 31.1321 32.7129

(116.74)** (55.78)** (27.67)** (13.21)**
k 1.1246 1.2996 1.3575 1.3393

(114.34)** (41.7)** (12.43)** (5.81)**
λ 0.0347 –0.0053 –0.0858 –0.1618

(7.31)** (–0.26) (–1.45) (–1.18)
δ 0.0504 –0.008 –0.1291 –0.2413
SK 0.1245 –0.0156 –0.2352 –0.4448
KU 5.14 4.34 4.18 4.34
LogL –20,605.2 –5,982.25 –1,721.1 –665.19
LR 1380.01** 143.8** 25.78** 7.69*
Observations 10,091 2,087 479 159
B. IBM
μa 5.0837 4.5339 4.5133 4.914

(1.34) (1.13) (1.19) (0.93)
σa 25.6804 26.5179 24.8387 25.8231

(115.2)** (53.13)** (28.27)** (14.82)**
k 1.0525 1.0795 1.4139 1.4782

(96.91)** (37.04)** (11.53)** (4.45)**
λ 0.0077 0.0117 0.0432 –0.0174

(1.2) (1.28) (1.18) (–0.07)
δ 0.011 0.0169 0.0657 –0.0266
SK 0.0302 0.0447 0.1126 –0.0425
KU 5.59 5.41 3.99 3.81
LogL –18,563.37 –5,564.74 –1,615.86 –630.59
LR 1,904.44** 334.39** 18.61** 4.89
Observations 10,091 2,087 479 159
C. DJIA
μa 9.0953 8.2669 8.5374 8.1550

(2.9)** (3.16)** (3.56)** (3.11)**
σa 16.4907 16.9915 15.3405 15.9583

(109.88)** (51.34)** (26.14)** (13.93)**
k 0.9379 1.1378 1.2303 1.3822

(147.94)** (52.26)** (13.9)** (5.68)**
λ 0.0364 –0.0524 –0.1795 –0.2396

(2.6)** (–2.44)* (–3.79)** (–1.65)
δ 0.0506 –0.0762 –0.2625 –0.3556

( Continued )
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TABLE 5. (Continued)

Daily Weekly Monthly Quarterly
C. DJIA
SK 0.1688 –0.1846 –0.5517 –0.6145
KU 6.61 5.08 4.81 4.33
LogL –14,075.35 –4,654.71 –1,371.18 –549.95
LR 2,655.04** 348.16** 47.55** 14.07**
Observations 10,435 2,087 479 159

D. S&P100

μa 10.1215 7.9407 7.9296 7.8124
(1.2) (2.51)* (2.77)** (2.63)**

σa 18.0505 17.6638 15.8855 16.6634
(107.51)** (45.06)** (20.22)** (9.64)**

k 0.8563 1.033 1.1542 1.1354
(124.32)** (43.18)** (11.39)** (4.1)**

λ 0.0319 –0.052 –0.2186 –0.2688
(0.81) (–4.55)** (–4.95)** (–4.33)**

δ 0.0432 –0.074 –0.3132 –0.3797
SK 0.1685 –0.2099 –0.7223 –0.887
KU 7.64 5.76 5.32 5.61
LogL –11,330.51 –3,616.54 –1,062.64 –425.98
LR 2,504.08** 345.73** 50.5** 20.43**
Observations 8,042 1,608 369 123
E. S&P500
μa 9.6742 8.4355 8.5264 8.3945

(1.09) (3.22)** (3.52)** (3.28)**
σa 16.7313 17.154 15.3151 16.2089

(94.37)** (52.4)** (26.55)** (13.3)**
k 0.9012 1.1012 1.2474 1.3726

(73.25)** (48.1)** (12.69)** (5.01)**
λ 0.029 –0.0668 –0.2028 –0.2998

(0.93) (–4.67)** (–4.04)** (–3.73)**
δ 0.0399 –0.0964 –0.2964 –0.4394
SK 0.1426 –0.2461 –0.6064 –0.7559
KU 7.02 5.31 4.79 4.49
LogL –14,097.67 –4,659.94 –1,369.8 –550.54
LR 2,876.27** 357.91** 51.56** 16.71**
Observations 10,435 2,087 479 159
F. GBP/USD
μa –1.0656 –1.0781 –1.2184 –0.9716

(–0.86) (–0.68) (–0.75) (–0.56)
σa 9.6222 10.1237 10.3942 10.5671

(99.17)** (53.8)** (27.57)** (12.43)**

( Continued )
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all log-return series and frequencies. The first eight rows report the
estimates and t-values for the mean, standard deviation, kurtosis, and
skewness parameters of the SGED. The t-values for these estimates are
enclosed in parentheses below the estimates. As in table 2, the estimated
means and standard deviations of log-returns are annualized using the

TABLE 5. (Continued)

Daily Weekly Monthly Quarterly
F. GBP/USD
k 1.0037 1.1881 1.4258 1.2525

(66.03)** (31.92)** (14.19)** (5.89)**
λ 0.0025 –0.0603 –0.0436 –0.1139

(0.15) (–2.48)* (–1.05) (–0.64)
δ 0.0036 –0.0886 –0.0663 –0.1685
SK 0.0107 –0.1999 –0.1121 –0.3478
KU 5.97 4.83 3.96 4.6
LogL –8,649.89 –3,588.95 –1,198.95 –484.86
LR 1,524.82** 195.51** 19.85** 10.82**
Observations 10,435 2,087 479 159

G. JY/USD

μa –1.9077 –1.803 –1.8054 –1.9732
(–0.92) (–0.87) (–0.82) (–0.82)

σa 11.1756 11.3946 11.4521 12.4452
(93.48)** (47.85)** (22.74)** (12.44)**

k 1.0207 1.2743 1.4376 1.6835
(68.31)** (32.13)** (11.18)** (4.57)**

λ –0.005 –0.1182 –0.0664 –0.2529
(–0.86) (–4.58)** (–0.81) (–2.04)*

δ –0.0071 –0.1754 –0.1011 –0.3879
SK –0.0207 –0.352 –0.1686 –0.4933
KU 5.83 4.52 3.93 3.58
LogL –7,422.2 –2,790.65 –902.15 –371.01
LR 1,244.32** 124.14** 11.09** 4.07
Observations 7,564 1,513 347 115

Note:  The SGED parameters are obtained by maximizing the sample log-likelihood
function with respect to the parameters μ, σ, k, and λ, where C, θ, and δ are given by equations
(11)-(13), sign is the sign of the residual (yt – μ + δ σ) , T is the sample size, ln is the natural
logarithm. The statistics for the means and standard deviations are annualized using Δt =
1/252, 1/52, 1/12,1/6, and 1/4 for the daily, weekly, monthly, and quarterly log-returns. The
estimate for δ (Pearson’s skewness) is computed by substituting the estimates for λ and k into
equation (13). LR is the log-likelihood ratio statistics for testing the null-hypothesis that the
series follow the normal distribution against the alternative hypothesis of the SGED
distribution. The LR statistic follows the χ2(2) with two degrees of freedom. *,** imply
statistically significant the five- and one-percent level of significance, respectively.
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FIGURE 3.— Boeing, Empirical Distributions of Log-Returns

formulas and where Δt = 1/252, 1/52, 1/12 anda t    ,a t   
1/4 for daily, weekly, monthly and quarterly log-returns, respectively.
The remaining rows contain estimates of Pearson’s skewness δ,
skewness SK and kurtosis KU calculated using equations (34), (35) and
(37), the sample log-likelihood function (LogL), and the log-likelihood
ratio (LR) for testing the null hypothesis of normality against the
alternative hypothesis of the SGED.

The estimated means and standard deviations of each series are
similar across the four data frequencies and close to the respective
estimates in table 2. The estimates of the kurtosis parameter k ranges
between 0.8563 and 1.1246 for daily, 1.033 and 1.2996 for weekly,
1.1542 and 1.4376 for monthly and 1.1354 and 1.6835 for quarterly log-
returns. Its respective means across the four frequencies are 0.9853,
1.1591, 1.3238 and 1.3777. These numbers indicate that, on average,
daily log-returns follow the Laplace distribution. The other log-return
data frequencies diverge from the Laplace distribution but do not
become normal (k = 2).
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FIGURE 4.— IBM, Empirical Distributions of Log-Returns

The kurtosis KU values range between 5.14 and 7.64 for daily, 4.34
and 5.76 for weekly, 3.93 and 5.32 for monthly and 3.58 and 5.61 for
quarterly log-returns. Their respective means across the four frequencies
are 6.26, 5.03, 4.43 and 4.39. These numbers also indicate that, on
average, daily log-returns have a kurtosis value of 6.26 close to that
Laplace distribution (KU = 6). The kurtosis values of the remaining log-
return frequencies are smaller, but do not approach the kurtosis of the
normal distribution (KU = 3).

The results for skewness (λ) indicate, in general, the presence of
negative skewness in the data. Twenty out of the twenty-eight estimated
values of λ are negative. In eleven of these cases the estimates are
statistically significant. In eight cases the estimates of λ are positive but
only in two of them are statistically significant. The results for skewness
are consistent with those of table 2.

Because the normal distribution is nested under the SGED, a log-
likelihood ratio statistic could be used to test the null hypothesis that
log-returns are normally distributed against the alternative hypothesis
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FIGURE 5.— DJIA, Empirical Distributions of Log-Returns

that they are SGED distributed. The null hypothesis for testing
normality is H0: k = 2 and λ = 0 and the alternative hypothesis is H1 : k
0 R+ and |λ| < 1. The statistic is computed using the formula LR =
–2×(LogL0 – LogL), where LogL0 is the maximum value of the log-
likelihood function under the null hypothesis of normality and LogL is
the maximum value of the log-likelihood function under the SGED
specification. The LR statistic is asymptotically distributed as a chi-
square with two degrees of freedom, χ2(2). With one exception
(quarterly log-returns for IBM), the LR statistics reject the null
hypothesis of normality. Note that for a small sample the statistical
power of the LR statistic is weak and may accept the null hypothesis of
normality when it should be rejected.

Figures 3 to 9 present the empirical distributions for the daily log-
returns of the seven series. The figures for weekly, monthly and
quarterly log-returns are qualitatively similar, therefore, are omitted.
The estimated SGED distributions are represented by the solid curves
and the estimated non-parametric distributions by the piecewise linear
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FIGURE 6.— S&P 100, Empirical Distributions of Log-Returns

curves; see Tapia and Thompson (1978), section 2.5 for the latter. For
comparison purposes, the estimated normal distributions are also
presented by the dotted curves. These graphs demonstrate that the
SGED provides a very good fit to the empirical distribution of log-
returns of all series. In some cases, the estimated SGED and the non-
parametric probability curves are indistinguishable. Moreover, they
deviate significantly from those of the normal distribution.

VI. Call Option Pricing

This section derives the SGED option pricing model and demonstrates
its relationship to several well-known pricing models for European call
options. These are the Black and Scholes’ (1973) model, Merton’s
(1973) continuous dividend yield model, Biger and Hull’s (1983)
currency model, and Black’s (1976) currency futures model.
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FIGURE 7.— S&P 500, Empirical Distributions of Log-Returns

A. SGED Option Pricing Model

Consider a European call option with a strike price X written on an asset
with a current (spot) price P0 that pays no dividends and expires n
periods from time t = 0. Let τ = n Δt be the option’s time to expiration.
The value of this option at expiration is equal to Cn = max(Pn – X, 0),
where Pn is the price of the underlying asset at expiration. Observe that

(61)  0 0 0exp ln ,nY
n nP P P P P e 

where
(62) 0lnn n a aY P P z     

is the log-return to prevail over the life of the option as a function of the
mean and the standard deviation of Yn and the standardized random
variable z with probability mass function given by dF(z) = f(z)dz.
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FIGURE 8.— GBP/USD, Empirical Distributions of Log-Returns

The expected value of the option at time n is 

    max ,0n nE C E P X 

. (63)  0 0max ,0nYP E e X P 

The presence of a positive pay-off at expiration (i.e., Pn > X) implies
that

. (64) 0lnn a aY z P X      
or

. 0ln a

a

P X
z h

 
 


  

The function E(Cn) can be expressed in terms of z
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FIGURE 9.— JY/USD, Empirical Distributions of Log-Returns
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where h is as defined above.
The option price at t = 0 is equal to present value of E(Cn). That is,

 0
r

nC e E C
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(65)      0 1a ar z r
z z

h

P e e dF z e X F h    


   

where r is an equilibrium discount rate of return for buyers and issuers
of call options. Under risk neutrality, this discount rate is taken to be
equal to the risk free rate. In the above equation, the parameters k, and
λ could be obtained by maximizing the SGED sample log-likelihood
function, equation 50, using data that best reflect the distribution of log-
returns of the underlying asset during the life of the option. As for σα
measures of implied volatility may be used. The values of P0 and X are
always known and do not change over the life of the call option.

B. Special Cases of SGED Option Pricing Model

Under normality, the integral in equation (36), see appendix B, becomes

(66)     
2 21 1

2 2
1

a aaz
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e f z dz e h e N d      
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.  (67)
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Moreover, the probability, 

(68)       21 1 ,zF h h h N d      

where
. (69)2 1 ad d   

Note that d1 and d2 is standard notation used in option pricing models
and N is used insetad of Φ. Substitution of these quantities into the
option pricing equation of equation (65) yields

, (70)     
21

2
0 0 1 2

a a r rC P e N d e X N d      

which can be used as pricing kernel in cases where log-returns are
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normal or returns are log-normal. In the above equation, the quantity
measures the stock’s expected return; see equation (27).21

22a 

Black and Scholes Model

In the absence of arbitrage opportunities, the expected annual return of
a stock paying no dividend is equal to the risk-free rate. That is,

. (71)21
2a a r  

Substitution of this equality into equation (70) gives the Black and
Scholes (1973) option pricing model,

, (72)   0 0 1 2
rC P N d e X N d 

where

(73)
   21

0 2
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ln a

a

P X r
d

 

 

 


and  2 1 .ad d   

Merton’s Model

In the case of a stock paying continuous dividend at an annual rate q, the
expected stock return, including dividends, is equal to the risk free
borrowing rate r. That is,

  (74)21
2 .a a q r   

Substitution of this equality into equation (70) gives Merton’s (1973)
continuous dividend yield model, 

, (75)   0 0 1 2
q rC P e N d e X N d   

where

(76)
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P X r q
d

 

 

  


and 2 1 .ad d   
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Currency Option Pricing Model

In the absence of arbitrage opportunities, the expected growth rate of a
currency is equal to the difference between the domestic r and foreign
interest rates rf. That is,

  (77)21
2 .a a fr r   

Substitution of this equality into equation (70) gives Biger and Hull’s
(1983) currency option pricing model,

, (78)   0 0 1 2
fr rC P e N d e X N d   

where
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Currency Future Option Model

Another variation of the model above is obtained by substituting the
exchange rate parity

, (80)( )
0

fr r
nF P e 

where Fn is the forward exchange rate into equation (70). That is,

(81)    0 1 2 ,r
nC e F N d X N d 

where
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and 2 1 .ad d   
This formulation is similar to Black’s (1976) model for pricing

options on currency futures, where Fn represents the futures price.

General Comments

Note that the four variation of the option pricing model presented above
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are based on the assumptions of normality of log-returns and absence of
arbitrage opportunities or that the mean return for stocks and stock
indices is equal to the risk free rate and for currencies equal to the
spread between the domestic and foreign interest rates. Table 5 presents
estimates for the mean returns of the seven series. The means of all
stocks and stock indices are considerably higher from the U.S. t-bill
rate, which has ranged between 3 and 6 percent during the past ten
years. The mean returns, however, for the two currencies are close to
the spread between the t-bill rate in the U.S. and those in the U.K. and
Japan. These differences are indirectly compensated with the use of
implied volatility measures which are typically larger than those
obtained through estimation using historical data. 

VII. Summary and Concluding Remarks

Analytical formulas and test statistics developed in this article
established that the presence of skewness and kurtosis in financial data
was the result of higher-order moment dependencies, such as
conditional heteroskedasticity, asymmetric volatility, and other non-
linear dependencies, that existed mainly in daily and weekly log-returns.
These dependencies prevented monthly, bimonthly, and quarterly log-
returns to obey the normality law implied by the central limit theorem.
As a consequence, prices of these assets violated the geometric
Brownian motion often assumed in pricing options and other derivative
assets.

The above findings necessitated the development of distributions
that provided better approximations to the empirical distributions of log-
returns. This article developed a skewed extension of the generalized
error distribution (SGED) and assessed its ability to fit the empirical
distribution of log-returns of several popular financial assets at various
data frequencies. The results showed that the SGED provided a good fit
to the empirical distribution of the data.

A model for pricing European call options based on the SGED was
developed that accommodated skewness and kurtosis in the data and
relaxed the assumptions of risk neutrality and no arbitrage opportunities.
Nevertheless, under the standard assumptions in option pricing of
normality of log-returns, risk neutrality, and absence of arbitrage
opportunities, the SGED model produced as special cases several well-
known option pricing models, such as the Black and Scholes (1973)
model, Merton’s (1973) continuous dividend yield model, Biger and
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Hull’s (1983) currency model, and Black’s (1976) currency futures
model.

Appendix A. SGED’s Moments

Consider the non-centered SGED probability density function 

, (A1) 
  

1exp
1

k

k k

u
f u C

k sgn u  

 
    

where C is a scaling constant. The rth non-centered moment of u is

 
 ,

0

11 exp
1

k
rr r

u r k k

uM Eu C u du
k  

  
      



(A2)
 0

1exp
1

k
r

k k

uC u du
k  

  
    


Define

(Α3)
 

1
1

k

k k

ut
k  




and note that

(Α4) 
1 1

1 k ku k t  
and

. (Α5) 
1 11 1

1 k kdu k t dt 
 

 
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The expected value of u is
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The third of u is

     3 4 43 3
,3 3 3

1 1 1 1
2uM A G          

(A17) 2 3
32 1 G   

where

. (A18)
13

3
4 1kG k
k k


        
   

The fourth moment is
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The fourth centered moment of u is
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The standardized skewness and kurtosis are
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Appendix B. Integral Evaluation Under Normality

Under normality, the integral
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where , dz = ds and Φ is the cumulative density for theas z   
standard normal distribution.
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